Name:

ME 315: Heat and Mass Transfer
 Spring 2008
 EXAM 2

Tuesday, 18 March 2008
7:00 to 8:00 PM

Instructions: This is an open-book exam. You may refer to your course textbook, your class notes and your graded homework assignments. Show all work clearly for maximum credit. CIRCLE ALL ANSWERS.

Problem	Score
1	$/ 16$
2	$/ 22$
3	$/ 22$
Total	

Name: \qquad

1. (16 points) A very thick insulating wall of a large chemical reaction chamber is initially at 300 K and has a surface area of $1 \mathrm{~m}^{2}$. Once the chemical reaction begins, the interior surface of the wall is suddenly exposed to a temperature of 2000 K for the duration of the reaction. Properties of the wall material are given in the figure.
a. What is the temperature of the insulating wall at a depth of $x=5 \mathrm{~cm}$ from the surface at the instant of time that is 5 minutes from the start of
 the reaction?
b. What is the rate of energy (W) transferred to the wall at the time instant, $\mathrm{t}=5 \mathrm{~min}$?
c. Sketch how the temperature profile in the wall will look at various times and label all important features.

Problem 1

Given:

$$
\begin{array}{lll}
\mathrm{T}_{\mathrm{i}}:=(300) \mathrm{K} & \mathrm{t}:=5 \mathrm{~min} & \mathrm{~A}:=1 \mathrm{~m}^{2} \\
\mathrm{~T}_{\mathrm{s}}:=(2000) \mathrm{K} & \mathrm{x}:=5 \mathrm{~cm} & \\
\mathrm{c}_{\mathrm{p}}:=800 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \rho:=1500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{k}:=1 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}
\end{array}
$$

(a)

Recognizing the wall as a semi-infinite medium, we can use equation 5.57 for the temperature:
$\frac{T_{x}-T_{s}}{T_{i}-T_{S}}=\operatorname{erf}\left(\frac{x}{2 \cdot \sqrt{\alpha \cdot t}}\right)$
Evaluating some of the terms:
$\alpha:=\frac{\mathrm{k}}{\rho \cdot \mathrm{c}_{\mathrm{p}}}$

$$
\alpha=8.333 \times 10^{-7} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

$\eta:=\frac{x}{2 \cdot \sqrt{\alpha \cdot t}}$

$$
\eta=1.581
$$

$\operatorname{erf}_{\eta}:=\operatorname{erf}\left(\frac{\mathrm{x}}{2 \cdot \sqrt{\alpha \cdot t}}\right) \quad \quad \operatorname{erf}_{\eta}=0.975$
Solving for Tx:

$$
\mathrm{T}_{\mathrm{x}}:=\mathrm{T}_{\mathrm{S}}+\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{S}}\right) \cdot\left(\operatorname{erf}\left(\frac{\mathrm{x}}{2 \cdot \sqrt{\alpha \cdot t}}\right)\right) \quad \mathrm{T}_{\mathrm{X}}=343.09 \mathrm{~K}
$$

(b)

Using equation 5.58 for the heat flux at $t=5 \mathrm{~min}$:
$\mathrm{q}_{\mathrm{S}}:=\frac{\mathrm{k} \cdot \mathrm{A} \cdot\left(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{\mathrm{i}}\right)}{\sqrt{\pi \cdot \alpha \cdot \mathrm{t}}} \quad \mathrm{q}_{\mathrm{S}}=6.066 \times 10^{4} \mathrm{~W}$
(c)

$$
\begin{array}{ll}
\mathrm{t}_{1}:=1 \mathrm{~min} & \text { The plot should look something like this with the surface temperature } \\
\mathrm{t}_{2}:=10 \mathrm{~min} & \text { at } \mathrm{x}=0 \text { at } 2000 \mathrm{~K} \text { and exponentially decay to } 300 \mathrm{~K} \text {. As time } \\
\mathrm{t}_{3}:=100 \mathrm{~min} & \text { increases, the exponential decrease occurs over a longer distance. } \\
\mathrm{t}_{4}:=10000000 \mathrm{~min} &
\end{array}
$$

Name: \qquad
2. (22 points) Long steel rods ($\mathrm{L}=100 \mathrm{~cm}, \mathrm{r}=1 \mathrm{~cm}$) are annealed in a furnace and then allowed to cool in a crossflow of air at a velocity of $u_{\infty}=10 \mathrm{~m} / \mathrm{s}$ and a temperature of $\mathrm{T}_{\infty}=27^{\circ} \mathrm{C}$. The rods come out of the oven at $600^{\circ} \mathrm{C}$ and may be considered safe to touch when the surface of the rods is at a temperature of 60 ${ }^{\circ} \mathrm{C}$. You may assume the ends of the rods are well insulated. Properties for the cooling air (at an appropriate film temperature) and for the steel rods are provided in the figure to the right. Note that radiation is neglected in this problem.
a. How long does it take for the rods to reach the safe-to-touch temperature?

Air:
$\mathrm{u}_{\infty}=10 \mathrm{~m} / \mathrm{s}$
$\mathrm{T}_{\infty}=27^{\circ} \mathrm{C}$
$\operatorname{Pr}=0.7$
$\mathrm{k}_{\mathrm{a}}=0.047 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$

$$
v=52.69 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}
$$

b. How much energy is lost from a single steel rod to the surrounding air if you let it cool to the safe-to-touch temperature?
c. What is the initial rate of heat transfer to the air at time $t=0$?

Problem 2

Known convective quantities; properties for Air at assumed T_film $=600 \mathrm{~K}$

$$
\begin{array}{ll}
\mathrm{u}:=10 \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{v}:=52.69 \cdot 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
\mathrm{~T}_{\mathrm{air}}:=(27+273) \mathrm{K} & \operatorname{Pr}:=0.7 \\
& \mathrm{k}_{\text {air }}:=0.047 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}
\end{array}
$$

Known steel (AISI 1010) properties (at $600 \mathrm{~K} \sim 330 \mathrm{C}$)

$$
\begin{array}{llll}
\mathrm{r}:=1 \mathrm{~cm} & \mathrm{~T}_{\mathrm{i}}:=(600+273) \mathrm{K} & \mathrm{k}_{\mathrm{s}}:=48.8 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} & \rho:=7832 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
\mathrm{D}:=2 \mathrm{r} & \mathrm{~T}_{\mathrm{f}}:=(60+273) \mathrm{K} & \mathrm{c}_{\mathrm{p}}:=582 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \\
\mathrm{~L}:=100 \mathrm{~cm} & &
\end{array}
$$

(a)

Calculate the Reynolds number

$$
\operatorname{Re}_{\mathrm{D}}:=\frac{\mathrm{u} \cdot \mathrm{D}}{v} \quad \quad \mathrm{Re}_{\mathrm{D}}=3.796 \times 10^{3} \quad \text { Therefore, the flow is Laminar since } \mathrm{Re}<5 \times 10^{\wedge} 5
$$

Using equation 7.52 to solve for h
$\mathrm{C}_{\text {air }}:=0.683$
$\mathrm{~m}_{\text {air }}:=0.466$
$\mathrm{m}_{\mathrm{air}}:=0.466$
$\mathrm{Nu}_{\mathrm{D} 1}:=\mathrm{C}_{\mathrm{air}} \cdot \operatorname{Re}_{\mathrm{D}}{ }^{\mathrm{m}_{\mathrm{air}}} \cdot \operatorname{Pr}{ }^{\frac{1}{3}}$
$\mathrm{Nu}_{\mathrm{D} 1}=28.232$
$\mathrm{h}_{1}:=\frac{\mathrm{k}_{\mathrm{air}} \cdot \mathrm{Nu}_{\mathrm{D} 1}}{\mathrm{D}}$
$\mathrm{h}_{1}=66.345 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}$

Biot $:=\frac{h_{1} \cdot \mathrm{r}}{2 \cdot \mathrm{k}_{\mathrm{S}}}$
Biot $=6.798 \times 10^{-3}$

Using equation 7.54 to solve for h

$$
\begin{aligned}
& \mathrm{Nu}_{\mathrm{D} 2}:=0.3+\frac{\left(0.62 \cdot \mathrm{Re}_{\mathrm{D}}{ }^{\frac{1}{2}} \cdot \mathrm{Pr}^{\frac{1}{3}}\right)}{\left[1+\left(\frac{0.4}{\mathrm{Pr}}\right)^{\frac{1}{3}}\right]^{\frac{1}{4}} \cdot\left[1+\left(\frac{\mathrm{Re}_{\mathrm{D}}}{282000}\right)^{\frac{5}{8}}\right]^{\frac{4}{5}}} \\
& \mathrm{Nu}_{\mathrm{D} 2}=31.654 \\
& \mathrm{~h}_{2}:=\frac{\mathrm{kair}^{2} \cdot \mathrm{Nu}_{\mathrm{D} 2}}{\mathrm{D}} \\
& \mathrm{~h}_{2}=74.386 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Biot }:=\frac{\mathrm{h}_{2} \cdot \mathrm{r}}{2 \cdot \mathrm{k}_{\mathrm{s}}} \\
& \text { Biot }=7.622 \times 10^{-3}
\end{aligned}
$$

With $\mathrm{Bi}<0.1$, the lumped capacitance analysis is valid
Since the ends of the rod are insulated, the surface area only includes the cylinder sides

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{s}}:=\pi \cdot \mathrm{D} \cdot \mathrm{~L} & \mathrm{~A}_{\mathrm{s}}=0.063 \mathrm{~m}^{2} \\
\mathrm{~V}_{\mathrm{vol}}:=\pi \cdot \mathrm{r}^{2} \cdot \mathrm{~L} & \mathrm{~V}_{\mathrm{vol}}=3.142 \times 10^{-4} \mathrm{~m}^{3}
\end{array}
$$

Using equations 5.4 and 5.5 for both h's

$$
\begin{array}{ll}
\mathrm{t}_{1}:=\left(\frac{\rho \cdot \mathrm{V}_{\mathrm{vol}} \cdot \mathrm{c}_{\mathrm{p}}}{\mathrm{~h}_{1} \cdot \mathrm{~A}_{\mathrm{s}}}\right) \cdot \ln \left(\frac{\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{air}}}{\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{air}}}\right) \\
\mathrm{t}_{1}=980.546 \mathrm{~s} & \mathrm{t}_{2}:=\left(\frac{\rho \cdot \mathrm{V}_{\mathrm{vol}} \cdot \mathrm{c}_{\mathrm{p}}}{\mathrm{~h}_{2} \cdot \mathrm{~A}_{\mathrm{s}}}\right) \cdot \ln \left(\frac{\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{air}}}{\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{air}}}\right) \\
\mathrm{t}_{1}=16.342 \mathrm{~min} & \mathrm{t}_{2}=874.55 \mathrm{~s} \\
& \mathrm{t}_{2}=14.576 \mathrm{~min}
\end{array}
$$

(b)

The total energy lost by the cylinder to the air when it reaches safe-to-touch temp:

$$
\begin{aligned}
& \mathrm{E}_{\text {out }}:=-\mathrm{E}_{\text {st }} \\
& \mathrm{E}_{\text {out }}:=\rho \cdot \mathrm{c}_{\mathrm{p}} \cdot \mathrm{~V}_{\mathrm{vol}} \cdot \int_{\mathrm{T}_{\mathrm{i}}}^{\mathrm{T}_{\mathrm{f}}} 1 \mathrm{dT} \\
& \mathrm{E}_{\text {out }}:=-\rho \cdot \mathrm{V}_{\mathrm{vol}^{\prime}} \cdot \mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right) \\
& \mathrm{E}_{\text {out }}=7.733 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

(c)

The initial rate of heat transfer to the surrounding air

$$
\begin{array}{l|l}
\mathrm{q}_{1}:=\mathrm{h}_{1} \cdot \mathrm{~A}_{\mathrm{s}} \cdot\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{air}}\right) & \mathrm{q}_{2}:=\mathrm{h}_{2} \cdot \mathrm{~A}_{\mathrm{s}} \cdot\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{air}}\right) \\
\mathrm{q}_{1}=2.389 \times 10^{3} \mathrm{~W} & \mathrm{q}_{2}=2.678 \times 10^{3} \mathrm{~W}
\end{array}
$$

Name: \qquad
3. (22 points) Refrigerant $\mathrm{R}-134 \mathrm{a}$ at $0^{\circ} \mathrm{C}$ is used to cool a hot circular tube such that its surface temperature is maintained constant at $55^{\circ} \mathrm{C}$. The tube has a diameter $\mathrm{D}=1 \mathrm{~cm}$ and length L $=0.5 \mathrm{~m}$. Fluid properties (at an appropriate temperature) are given in the figure.

a. Assuming that the flow is hydrodynamically fully developed as it enters the heated tubing, what is the mean outlet temperature of the R-134a?
b. What is the total energy input to the fluid?
c. If the flow had been both thermally and hydrodynamically fully developed throughout the tube length, would we calculate a higher or lower mean outlet temperature? Explain your answer from physical considerations, but do not provide any formal calculations.

Problem 3

Given fluid information:

$$
\begin{array}{ll}
\rho:=1237 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{c}_{\mathrm{p}}:=1393 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mu:=0.000216 \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \quad \mathrm{k}:=.085 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} \\
\mathrm{Pr}:=\frac{\mathrm{c}_{\mathrm{p}} \cdot \mu}{\mathrm{k}} & \mathrm{Pr}=3.54 \quad \mathrm{~T}_{\mathrm{mi}}:=(0+273) \mathrm{K} \\
\mathrm{Q}:=30 \frac{\mathrm{~mL}}{\mathrm{~min}} & \mathrm{Q}=5 \times 10^{-7} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
\end{array}
$$

Given tube information:

$$
\begin{array}{ll}
\mathrm{D}:=1 \mathrm{~cm} & \mathrm{~T}_{\mathrm{S}}:=(55+273) \mathrm{K} \\
\mathrm{~L}_{\mathrm{t}}:=0.5 \mathrm{~m} & \mathrm{~T}_{\mathrm{S}}=328 \mathrm{~K} \\
\mathrm{P}:=\pi \cdot \mathrm{D} &
\end{array}
$$

(a)

$$
\mathrm{m}_{\mathrm{dot}}:=\rho \cdot \mathrm{Q} \quad \mathrm{~m}_{\mathrm{dot}}=6.185 \times 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

$\operatorname{Re}_{\mathrm{D}}:=\frac{4 \cdot \mathrm{~m}_{\mathrm{dot}}}{\pi \cdot \mathrm{D} \cdot \mu} \quad \operatorname{Re}_{\mathrm{D}}=364.583 \quad$ Therefore the flow is laminar since $\mathrm{Re}<2300$
Equation 8.23 for thermal entrance length in laminar flow

$$
\mathrm{x}_{\mathrm{fdt}}:=0.05 \cdot \mathrm{Re}_{\mathrm{D}} \cdot \operatorname{Pr} \cdot \mathrm{D} \quad \mathrm{x}_{\mathrm{fdt}}=0.645 \mathrm{~m}
$$

Therefore the problem is thermally developing since x_fdt > L_t
For a laminar, constant surface temperature condition with an assumed fully developed velocity profile and thermally developing flow, we can use equation 8.56

$$
\begin{array}{ll}
\mathrm{Nu}_{\text {Davg }}:=3.66+\frac{0.0668\left(\frac{\mathrm{D}}{\mathrm{~L}_{\mathrm{t}}}\right) \cdot \mathrm{Re}_{\mathrm{D}} \cdot \operatorname{Pr}}{1+0.04 \cdot\left[\left(\frac{\mathrm{D}}{\mathrm{~L}_{\mathrm{t}}}\right) \cdot \operatorname{Re}_{\mathrm{D}} \cdot \mathrm{Pr}\right]^{\frac{2}{3}}} & \mathrm{Nu}_{\text {Davg }}=4.938 \\
\mathrm{~h}_{\text {avg }}:=\frac{\left(\mathrm{k} \cdot \mathrm{Nu}_{\text {Davg }}\right)}{\mathrm{D}} & \mathrm{~h}_{\text {avg }}=41.971 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}
\end{array}
$$

Using equation 8.41, we can arrive at the mean outlet temperature

$$
\frac{\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{mo}}}{\mathrm{~T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{mi}}}:=\mathrm{e}^{\left(\frac{-\mathrm{P} \cdot \mathrm{~L} \cdot \mathrm{~h}_{\text {avg }}}{\mathrm{m}_{\mathrm{dot}} \cdot \mathrm{c}_{\mathrm{p}}}\right)}
$$

Rearranging,

$$
\mathrm{T}_{\mathrm{mo}}:=\mathrm{T}_{\mathrm{s}}-\left(\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{mi}}\right) \cdot \mathrm{e}^{\left(\frac{-\mathrm{P} \cdot \mathrm{~L}_{\mathrm{t}} \cdot \mathrm{~h}_{\mathrm{avg}}}{\mathrm{~m}_{\mathrm{dot}} \cdot \mathrm{c}_{\mathrm{p}}}\right)} \quad \mathrm{T}_{\mathrm{mo}}=302.412 \mathrm{~K} \quad \text { (or } \mathrm{T}_{-} \mathrm{mo}=29.4 \mathrm{C} \text {) }
$$

(b)

The total energy put into the liquid is:

$$
\mathrm{q}_{\text {input }}:=\mathrm{m}_{\mathrm{dot}} \cdot \mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{\mathrm{mo}}-\mathrm{T}_{\mathrm{mi}}\right) \quad \mathrm{q}_{\text {input }}=25.341 \mathrm{~W}
$$

(c)

For fully developed flow (both thermally and hydrodynamically) and constant wall temperature:
$\mathrm{Nu}_{\mathrm{D}}:=3.66$
Since the fully developed Nu is smaller than the Nu for thermally developing flow, the fully developed assumption would result in a lower heat transfer coefficient and lower mean outlet temperature according to equation 8.41. In other words, if convection decreased (since Nu and h decrease) the rate at which the fluid picks up energy is lower and therefore would exit at a lower temperature.

