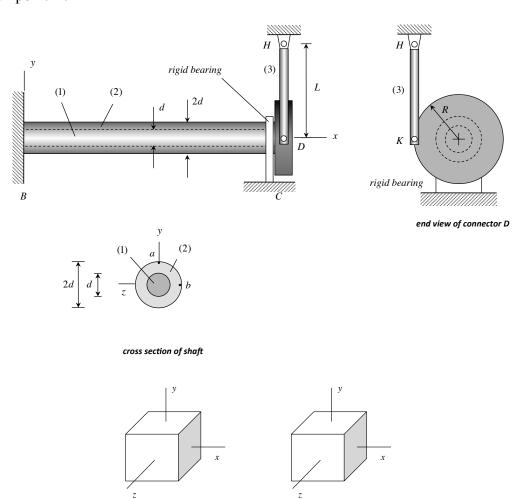
Name (Print)	(Last)		(First)		
ME 323 – Mechanics of Materials Exam #1 – Fall 2017 Wednesday, October 4					
<u>Instructions</u>					
Circle your instru	uctor's name/class period:				
Gonzalez 11:30	Krousgrill 12:30	Zhao 2:30	Krousgrill 4:30		
This is a <i>closed</i> i	book/closed notes exam.				
Please remembe clearly. Accordin	_	imum credit for a pr	oblem, you must present your solution		
free bowrite do	nate systems must be clearly dy diagrams must be shown own clarifying remarks, our assumptions, etc.				
If your solution c	annot be followed, it will be	assumed that it is ir	n error.		
PLEASE DO NO	OT WRITE ON THE BACK	SIDE OF THE EXAI	M PAPERS.		
•	the exam sheets during the when you submit your com		t ALL SHEETS are in the correct		
		Prob. 1			
		Prob. 2			
		Prob. 3			
		Prob. 4			
Please rea	d the following statement ar	nd sign. An unsigned	d exam will not receive a score.		
I have no exam.	either given nor received un	authorized assistand	ce during the completion of this		
Signatus	re:				


October 4, 2017

PROBLEM NO. 1 - 25 points max.

Shaft BC is made up of elements (1) and (2), with (1) being a core concentrically placed within the tubular element (2). Elements (1) and (2) have shear moduli of G and 2G, respectively. The shaft is rigidly connected to a fixed wall at B and to a rigid connecter at D. A rigid bearing supports the shaft just inside the connector D. Rod (3) (of length L, Young's modulus E, thermal expansion coefficient α and cross-sectional area A) connects point K on connector D to a fixed support at H. The temperature of (3) is increased by an amount of ΔT , with the rest of the system being held fixed in temperature.

- a) Determine the torques carried by elements (1) and (2) of the shaft.
- b) Consider the points "a" and "b" on the outer radius of segment (2). Draw the stress elements to represent the stress states at "a" and "b".

HINTS: The bearing near the end of the shaft restricts transverse deflection of the shaft, but allows free rotation of that end of the shaft. Assume small rotations of connector D as the temperature of (3) is increased. Note that connector D provides a rigid connection between the centerline of the shaft and the connection point K.

Page 2 of 14

stress element at "b"

stress element at "a"

ME 323 Examination # 1	Name
October 4, 2017	Instructor

PROBLEM NO. 1 (continued)

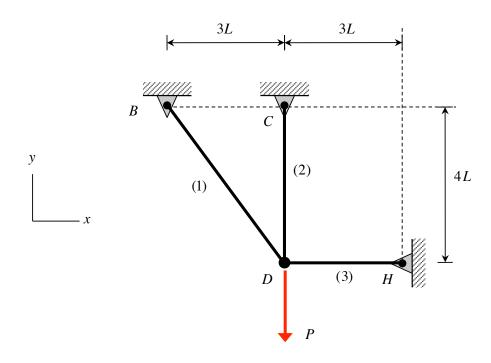
ME 323 Examination # 1	Name
October 4, 2017	Instructor

PROBLEM NO. 1 (continued)

PROBLEM NO. 2 – 25 points max.

The cantilever beam AH is acted upon by a uniformly distributed downward load of intensity 4P/L (force/length) between A and B, a concentrated moment $M_0 = 2PL$ at C, and a vertical force P at D. Using $P = 20 \, lb$ and $L = 8 \, in$, construct the shear force and bending moment diagrams for the beam. Mark numerical values for points A through H, along with max/min values on these diagrams.

NOTE: You are <u>not</u> required to show your calculations needed for constructing these diagrams; that is, if your diagrams are correct, you will receive full credit without calculations. However, if you have numerical errors in your answers without supporting calculations, you will <u>not receive partial credit</u>. It is suggested that you show calculations.

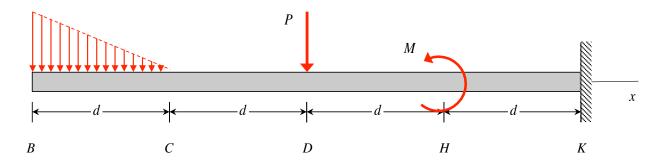

ME 323 Examination # 1	Name
October 4, 2017	Instructor

PROBLEM NO. 2 (continued)

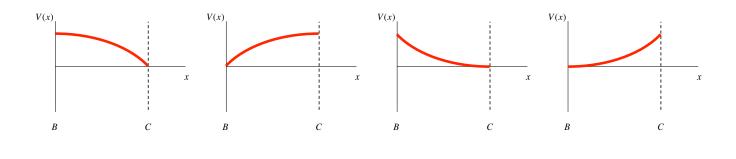
PROBLEM NO. 3 - 25 points max.

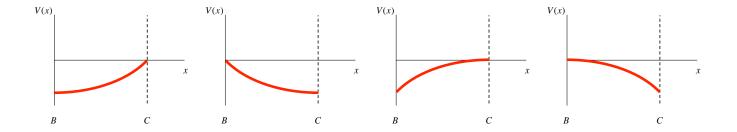
Each of the three truss members in the figure has a modulus of elasticity E. The cross-sectional areas of the members are $A_1 = A_3 = A$ and $A_2 = 2A$. Member (2), whose coefficient of thermal expansion is α , is heated by an amount $\Delta T_2 = \Delta T$, and a vertical load P is applied to the truss at joint D. The temperature of the other members is held constant.

- a) Draw the free-body diagram for joint D.
- b) Determine expressions for the member axial forces F_1 , F_2 , and F_3 in terms of parameters defined here in the problem statement (E, A, P, α and ΔT).

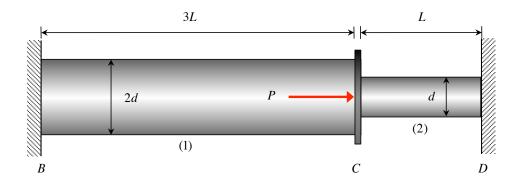


ME 323 Examination # 1	Name
October 4, 2017	Instructor

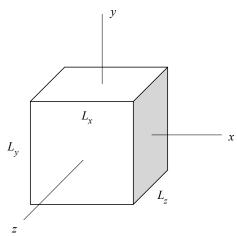

PROBLEM NO. 3 (continued)


You are NOT required to show your work for any part of Problem No. 4.

PROBLEM NO. 4 - PART A - 3 points max.



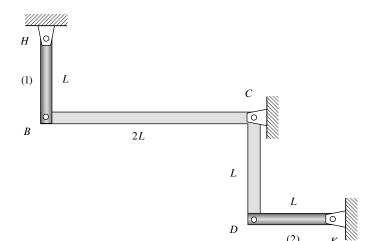
The above loading is applied to a cantilevered beam. *Circle* the figure below which most accurately describes the internal shear force resultant in the beam between locations B and C.


PROBLEM NO. 4 - PART B - 3 points max.

A rod is made up of solid elements (1) and (2) joined by a rigid connector C, with the material of (1) and (2) having the same modulus of elasticity E. An axial load P is applied to C with no thermal loads being present. Let F_1 and F_2 represent the axial loads in elements (1) and (2), respectively. Circle the response below which most accurately describes the relative sizes of $\left|F_1\right|$ and $\left|F_2\right|$:

- a) $|F_1| > |F_2|$
- b) $|F_1| = |F_2|$
- c) $|F_1| < |F_2|$
- d) More information is needed to answer this question.

PROBLEM NO. 4 - PART C - 4 points max.


A cube of dimensions $\left(L_x,L_y,L_z\right)$ experiences a state of stress with uniform components of stress though out the cube. The material of the cube has a Young's modulus of E and a Poisson's ratio of v=0.4. As a result of the loading on the cube, it is known that $\sigma_y=\sigma_z=\sigma_x/2>0$. As a result of this loading (circle the correct answer):

- a) The dimension L_z is increased.
- b) The dimension L_z remains the same.
- c) The dimension L_z is decreased.
- d) More information is needed to answer this question.

ME 323 Examination # 1

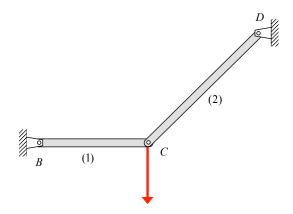
October 4, 2017

Name ______ Instructor

Identical elements (1) and (2) (each having a Young's modulus E, coefficient of thermal expansion α and cross-sectional area A) are connected between ends B and D, respectively, of a rigid, L-shaped bar BCD. The temperature of (1) is *increased* by an amount of $\Delta T > 0$, with the temperature of element (2) being held constant.

PROBLEM NO. 4 - PART D - 3 points max.

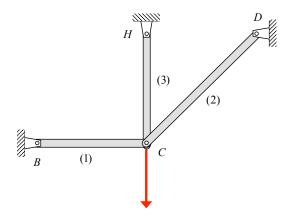
Consider the *load* (force) carried by element (1):


- a) The load in (1) is *compressive*.
- b) The load in (1) is zero.
- c) The load in (1) is tensile.

PROBLEM NO. 4 - PART E - 3 points max.

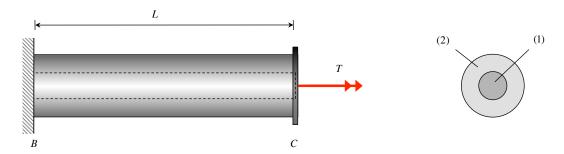
Consider the *strain* in element (1):

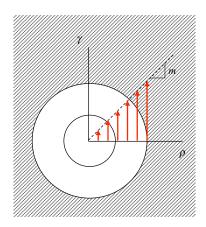
- a) The strain in (1) is *compressive*.
- b) The strain in (1) is zero.
- c) The strain in (1) is tensile.

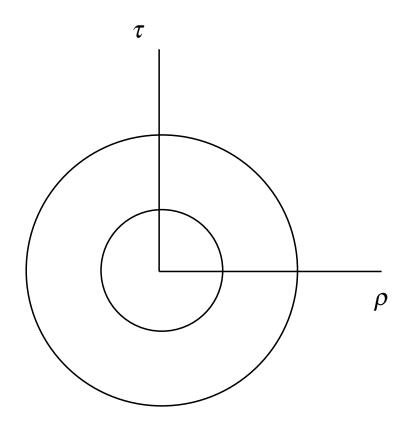

PROBLEM NO. 4 - PART F - 3 points max.

Consider the truss above that is made up of elements (1) and (2).

TRUE or FALSE: The stress in element (1) depends on the material makeup of element (2).


PROBLEM NO. 4 - PART G - 3 points max.


Consider the truss above that is made up of elements (1), (2) and (3).


TRUE or FALSE: The stress in element (1) depends on the material makeup of elements (2) and (3).

PROBLEM NO. 4 - PART H - 3 points max.

A shaft is made up of a tubular element (2) and core element (1), with the elements have shear moduli of G_2 and G_1 , respectively, with $G_2 > G_1$. These elements at attached to a rigid support at B and are attached to a rigid connector C. A torque T is applied to connector C. The resulting shear strain distribution γ on the shaft cross section is shown in the figure below left. In the figure below right, make sketch of the shear stress distribution τ in the shaft cross section. Clearly indicate the slopes of the shear stress curves in terms of the shear strain slope m.

