Problem 1:
FBD:

$$
\begin{gather*}
F_{1} \longleftarrow F_{3} \tag{1}\\
2 P \longleftarrow F_{2} \longleftarrow F_{3}-F_{1}-F_{2}-2 P=0 \\
e_{1}=\frac{F_{1} L_{1}}{E A_{1}}+\alpha \Delta T L_{1}=\frac{2 F_{1} L}{E \frac{1}{4} \pi d^{2}}+2 \alpha \Delta T L=\frac{8 F_{1} L}{E \pi d^{2}}+2 \alpha \Delta T L \\
e_{2}=\frac{F_{2} L_{2}}{E A_{2}}=\frac{F_{2} L}{E \frac{1}{4} \pi\left(9 d^{2}-4 d^{2}\right)}=\frac{4 F_{2} L}{5 E \pi d^{2}} \\
e_{3}=\frac{F_{3} L_{3}}{E A_{3}}=\frac{F_{3} L}{E \frac{1}{4} \pi\left(4 d^{2}-d^{2}\right)}=\frac{4 F_{3} L}{3 E \pi d^{2}}
\end{gather*}
$$

Compatibility equations:

$$
\begin{gathered}
e_{1}=e_{2} \\
\frac{8 F_{1} L}{E \pi d^{2}}+2 \alpha \Delta T L=\frac{4 F_{2} L}{5 E \pi d^{2}} \\
F_{1}=\frac{1}{10} F_{2}-\frac{1}{4} \alpha \Delta T E \pi d^{2} \\
e_{2}+e_{3}=0 \\
\frac{4 F_{2} L}{5 E \pi d^{2}}+\frac{4 F_{3} L}{3 E \pi d^{2}}=0 \\
F_{3}=-\frac{3}{5} F_{2}
\end{gathered}
$$

solve equation (1):

$$
\begin{aligned}
& F_{1}=-\frac{4}{17} \alpha \Delta T E \pi d^{2}-\frac{2}{17} P \\
& F_{2}=\frac{5}{34} \alpha \Delta T E \pi d^{2}-\frac{20}{17} P \\
& F_{3}=-\frac{3}{34} \alpha \Delta T E \pi d^{2}+\frac{12}{17} P
\end{aligned}
$$

Axial stresses:

$$
\begin{gathered}
\sigma_{1}=\frac{F_{1}}{A_{1}}=\frac{-\frac{4}{17} \alpha \Delta T E \pi d^{2}-\frac{2}{17} P}{\frac{1}{4} \pi d^{2}}=\frac{-16 \alpha \Delta T E \pi d^{2}-8 P}{17 \pi d^{2}} \\
\sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{\frac{5}{34} \alpha \Delta T E \pi d^{2}-\frac{20}{17} P}{\frac{5}{4} \pi d^{2}}=\frac{2 \alpha \Delta T E \pi d^{2}-16 P}{17 \pi d^{2}} \\
\sigma_{3}=\frac{F_{3}}{A_{3}}=\frac{-\frac{3}{34} \alpha \Delta T E \pi d^{2}+\frac{12}{17} P}{\frac{3}{4} \pi d^{2}}=\frac{-2 \alpha \Delta T E \pi d^{2}+16 P}{17 \pi d^{2}}
\end{gathered}
$$

Displacement of the connector C :

$$
u_{c}=0+e_{2}=\frac{4 F_{2} L}{5 E \pi d^{2}}=\frac{2}{17} \alpha \Delta T L-\frac{16 P L}{17 E \pi d^{2}}
$$

ME 323 - Mechanics of Materials Examination \#1
February $12^{\text {th }}, 2020$

Mechanical Engineering
Name (Print) $\frac{\text { SOLIJTiON }}{\text { (Last) }}$

PROBLEM \# 2 (25 points)

The rigid bar BCD is supported by the two elastic elements (1) and (2) as shown in the figure below. Elastic element (1) has a length L, cross-sectional area A, modulus of elasticity E and coefficient of thermal expansion α. Elastic element (2) has a length $L / 2$, cross-sectional area 4 A and modulus E . A distributed load w_{0} is applied between $C D$ of the bar. At the same time, element (1) is being cooled by a temperature change ΔT, while element (2) does not change temperature. Determine:
a) The axial force experienced by element (1).
b) The axial stress experienced by (1). Indicate if it is in tension or compression.
c) The axial force experienced by element (2).
d) The axial stress experienced by (2) and whether it is in tension or compression.

Use the following numerical values:
$\mathrm{E}=30 \times 10^{3} \mathrm{ksi}, \alpha=10^{-6} / \mathrm{F}, \Delta \mathrm{T}=-30 \mathrm{~F}, \mathrm{~L}=12 \mathrm{in} ., \mathrm{A}=0.5 \mathrm{in}^{2}, w_{0}=150 \mathrm{lb} / \mathrm{in}$

PROBLEM \# 2 (cont.)

Equilibrium:

Elongations: $\quad e_{1}=\frac{F_{1} L}{E A}+\alpha \Delta T L$

$$
\begin{equation*}
e_{2}=\frac{F_{2}\left(\frac{L}{2}\right)}{E(4 A)}=\frac{F_{2} L}{8 A} \tag{2}
\end{equation*}
$$

Compatibility:

$$
\begin{aligned}
& \text { Compatibility: } \\
& \quad \tan \theta \approx \theta=\frac{e_{1}}{\left(\frac{L}{2}\right)}=-\frac{e_{2}}{L}=D 2 e_{1}=-e_{2} \\
& \text { Replace (2) } 1(3) \text { in }(4) \\
& \quad \frac{2 F_{1} L}{E_{A}}+2 \alpha \Delta T L=-\frac{F_{2} L}{8 E A} \\
& \text { or } \quad F_{2}=-16 F_{1}-16 E A \alpha \Delta T
\end{aligned}
$$

PROBLEM \# 2 (cont.)
Replace F_{2} in (1)

$$
F_{1}+32 F_{1}+32 E A \alpha \Delta T=\frac{3}{4} \omega_{0} L
$$

Solve for F_{1}

$$
\begin{aligned}
& F_{1}=0.023 \omega_{0} L-0.9697 E A \alpha \Delta T \\
&=0.023(150)(12)-0.9697\left(30 \times 10^{6}\right)\left(1 \times 10^{-6}\right) \\
&(0.5)(-30)
\end{aligned} \quad \begin{aligned}
F_{1} & =477.316 \mathrm{~s} \quad \sigma_{1}=\frac{F_{1}}{A}=954.6 \mathrm{psi}(T)
\end{aligned}
$$

$$
\begin{aligned}
& F_{2}=-16(477.3)-16\left(30 \times 10^{6}\right)\left(1 \times 10^{-6}\right)(-30)(0.5) \\
& F_{2}=-436.2 \mathrm{lbs} \sigma_{2}=\frac{F_{2}}{4 A}=-218.1 \mathrm{psi}(\mathrm{c})
\end{aligned}
$$

Name (Print) \qquad

PROBLEM \# 3 (25 points)

Shafts (1) and (2) in Fig. 3(a) are connected by a rigid connector at B, and are fixed to the rigid walls at the ends A and C. Both shafts have length L and shear modulus G. Shaft (1) has a solid cross section of diameter $2 d$, while shaft (2) has a hollow cross section of outer diameter $2 d$ and inner diameter d as shown in Figs. 3(b) and 3(c). An external torque T_{B} is applied at the connect B .
(a) Determine if the assembly is statically determinate or indeterminate.
(b) Determine the internal torque carried by each shaft.
(c) Consider the points M and N on the outer radius of shaft (1) and (2), respectively. The crosssection views are shown in Figs. 3(b) and 3(c). Determine the state of stress at M and N .
(d) Draw the stress elements to represent the state of stress at M and N with clear labels of the stress components.

Express your results in terms of T_{B}, d, L, G, and π.

Fig. 3(a)

Fig. 3(b)

stress element at M

Fig. 3(c)

stress element at N
\qquad
PROBLEM \# 3 (cont.)
ABD:

$$
\sum_{\oplus} T=O=T_{C}+T_{A}-T_{B}
$$

$$
\xrightarrow{\oplus}
$$

\Rightarrow statically indeterminate.

- Assume all members under positive torque. FBD

- Equilibrium:

$$
\sum_{\rightarrow \rightarrow} T=O=T_{2}-T_{1}-T_{B}
$$

- Torque-fuist behavior:

$$
\begin{array}{ll}
\phi_{1}=\frac{T_{1} L}{G I_{p_{1}}} & w / I_{p_{1}}=\frac{\pi(2 d)^{4}}{32}=\frac{\pi d^{4}}{2} \\
\phi_{2}=\frac{T_{2} L}{6 I_{p 2}} & w / I_{p_{2}}=\frac{\pi\left[(2 d)^{4}-d^{4}\right]}{32}=\frac{\pi 15 d^{4}}{32}
\end{array}
$$

- Compatibility conditions:

$$
\begin{gathered}
\phi_{1}=\phi_{B}-\phi_{A} ; \quad \phi_{2}=\phi_{C}-\phi_{B} ; \quad \phi_{A}=\phi_{C}=0 \\
\Rightarrow \phi_{1}=-\phi_{2}
\end{gathered}
$$

ME 323 - Mechanics of Materials Examination \#1
February $12^{\text {th }}, 2020$

$$
\text { Name (Print) } \quad \text { (Last) } \quad \text { (First) }
$$

PROBLEM \# 3 (cont.)

- Solve for T_{1} and T_{2}

$$
\begin{aligned}
& T_{2}-T_{1}-T_{B}=0 \& \frac{T_{1} L}{G \pi d / / 2}=-\frac{T_{2} L}{G \pi 15 d^{4} / 32} \\
& T_{2}=\frac{15}{31} T_{B} \\
& T_{1}-16 T_{2} \Leftrightarrow T_{1}=-T_{2} \frac{16}{15}
\end{aligned}
$$

$$
T_{1}=-\frac{16}{31} T_{s}
$$

$$
Z_{x_{2}}=-\frac{d\left(16 T_{2 / 31}\right)}{\pi d^{4} / 2}=-\frac{32 \overline{T_{2}}}{31+d^{3}}
$$

Problem ${ }^{4}$
PatnA
FBI:

Compatibility eqn:

$$
\begin{aligned}
& \Delta \phi_{1}+\Delta \phi_{2}=0 \\
& \Rightarrow \frac{T_{1} L}{G_{1} I_{p_{1}}}+\frac{T_{2} L}{G_{2} I_{p_{2}}}=0 \Rightarrow T_{2}\left[\frac{1}{G_{1} I_{1}}+\frac{1}{G_{2} I p_{2}}\right]=\frac{-T}{G_{1} I_{p_{1}}} \\
& \Rightarrow T_{2}=\frac{-T G_{2} I_{p_{2}}}{G_{1} I_{p_{1}}+G_{2} I_{p_{2}}}<0 \\
& \Rightarrow T_{1}=\frac{T G_{1} I_{p_{1}}}{G_{1} I_{p_{1}}+G_{2} I_{p_{2}}}>0
\end{aligned}
$$

The given bonding condition creates only shear stress on x-face

$$
\begin{aligned}
& \therefore \sigma_{x}=\sigma_{y}=\sigma_{z}=\tau_{y z}=0 \\
& \tau=\frac{T_{\rho}}{T_{p}} ; \therefore \tau_{x z, M}=0(\because \rho=0) ; \tau_{x z}>0
\end{aligned}
$$

Part B
FBI:

$$
\Sigma F_{x}: F+F_{2}=F_{1}
$$

Compatibly eon:

$$
\begin{gathered}
e_{1}+e_{2}=0 \Rightarrow \frac{F_{1} L}{E_{1} A_{1}}+\frac{F_{2} L}{E_{2} A_{2}}=0 \\
\Rightarrow F_{2}=\frac{-F E_{2} A_{2}}{E_{1} A_{1}+E_{2} A_{2}}<0 \\
F_{1}=\frac{F E_{1} A_{1}}{E_{1} A_{1}+E_{2} A_{2}}>0
\end{gathered}
$$

The lading condition does not create any in $y \& z$ dir.

$$
\begin{aligned}
\therefore & \tau_{x y}=\tau_{y z}=\tau_{x z}=\sigma_{y}=\sigma_{z}=0 \\
& \therefore \sigma_{x, M}>0 ; \sigma_{x, N}<0
\end{aligned}
$$

Part C
a)

Compatibility conds:

$$
\begin{aligned}
& e=u_{A} \cos \theta+v_{A} \sin \theta \\
& \therefore e_{1}=\frac{u_{A}}{\sqrt{2}}-\frac{v_{A}}{\sqrt{2}} ; e_{2}=-v_{A} ; e_{3}=-u_{A} \\
& \Rightarrow e_{1}=\frac{1}{\sqrt{2}}\left(e_{2}-e_{3}\right) \\
& \quad \therefore a=\frac{1}{\sqrt{2}}=-b
\end{aligned}
$$

b) True

Because its indeterminate \& needs compatibility conds. To save fo internal

Part B
FBI:

$$
\Sigma F_{x}: F+F_{2}=F_{1}
$$

Compatibly eon:

$$
\begin{gathered}
e_{1}+e_{2}=0 \Rightarrow \frac{F_{1} L}{E_{1} A_{1}}+\frac{F_{2} L}{E_{2} A_{2}}=0 \\
\Rightarrow F_{2}=\frac{-F E_{2} A_{2}}{E_{1} A_{1}+E_{2} A_{2}}<0 \\
F_{1}=\frac{F E_{1} A_{1}}{E_{1} A_{1}+E_{2} A_{2}}>0
\end{gathered}
$$

The lading condition does not create any in $y \& z$ dir.

$$
\begin{aligned}
\therefore & \tau_{x y}=\tau_{y z}=\tau_{x z}=\sigma_{y}=\sigma_{z}=0 \\
& \therefore \sigma_{x, M}>0 ; \sigma_{x, N}<0
\end{aligned}
$$

Pat D
For the following states of stress, only non-zevo values
a) $\xlongequal[\square]{L_{\tau}}$

$$
\begin{aligned}
& \tau_{x y}=\tau_{y x}<0 \\
& \therefore \gamma_{x y}<0
\end{aligned} \quad \begin{array}{r}
\varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-\nu\left(\sigma_{y}+\sigma_{z}\right)\right) \\
\quad \gamma_{x y}=\frac{\tau_{x y}}{G} ; G=E \\
2(1+\nu)
\end{array}
$$

b)

$$
\begin{aligned}
& \sigma_{x}=\sigma_{y}>0 ; \tau_{x y}=\tau_{y x}>0 \\
& \therefore \varepsilon_{x}>0, \varepsilon_{y}>0, \varepsilon_{z}<0, \delta_{x y}>0
\end{aligned}
$$

c)

$$
\begin{aligned}
& \quad \sigma_{x}>0, \sigma_{y}<0 \\
& \therefore \quad \varepsilon_{x}>0, \varepsilon_{y}<0
\end{aligned}
$$

d) $\xrightarrow[a]{4}$

$$
\begin{aligned}
& \sigma_{y}<0, \tau_{x y}=\tau_{y x}<0 \\
& \therefore \varepsilon_{x}>0, \varepsilon_{y}<0, \varepsilon_{z}>0, \gamma_{x y}<0
\end{aligned}
$$

e)

$$
\begin{aligned}
& \sigma_{x}>0, \sigma_{y}<0 \\
& \varepsilon_{x}>0, \varepsilon_{y}<0, \varepsilon_{z}<0
\end{aligned}
$$

The final answers in order are:

$$
f, c, f, d, a, f, f, b, f, e
$$

