Exam 1

February 22, 2023
Name (Print) \qquad

PROBLEM \#1 (25 points)

A rigid L-shaped bar ABC is connected at A to a deformable bar AD. AD has a Young's modulus of E and an area of $2 \mathrm{~A} . \mathrm{ABC}$ is also connected to a deformable bar at C that has a Young's modulus of 2E and an area of A. The thermal expansion coefficient of CG is α and temperature of deformable bar CG is decreased by $\Delta \mathrm{T}$.

	(1)	(2)
E	E	2 E
A	2 A	A
$\Delta \mathrm{~T}$	0	$\Delta \mathrm{~T}$
α	$10 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$	$10 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$

(a) Draw the free body diagram for the assembly.
(b) Write the equilibrium equation(s) for the assembly.
(c) Is the assembly determinate or indeterminate?
(d) Find the stresses in each member in terms of L, A, E, ΔT, and/or α.
(e) $\mathbf{E}=\mathbf{6 0} \mathbf{~ G P a}, \mathbf{A}=\mathbf{1 0 0} \mathbf{~ m m}^{2}$, and $\mathbf{L}=\mathbf{2 m}$. The ultimate tensile stress of all of the materials is $\boldsymbol{\sigma}_{\mathbf{U}}=\mathbf{1 8 0}$ MPa. Using a factor of safety of 3.0 , determine the maximum temperature change $(\Delta \mathrm{T})$ that the assembly can withstand.

(a) FBD

(b) Equilibrium

$$
\begin{aligned}
& (\Sigma M)_{B}=-F_{1} 2 L+F_{2} L=0 \\
& F_{2}=2 F_{1} \\
&
\end{aligned}
$$

(c) Assembly is in indererminaté (2 unknowns and 1 equation). レ. - - - _ _(2) ৷
(d) Force-Elongation

$$
\begin{array}{ll}
e_{1}=\frac{F_{1} L_{1}}{E_{1} A_{1}}+\alpha \Delta T_{1} L_{1} & e_{2}=\frac{F_{2} L_{2}}{E_{2} A_{2}}+\alpha \Delta T_{2} L_{2} \\
e_{1}=\frac{F_{1} L}{2 E A} & \text { (1) } \tag{}\\
e_{2}=\frac{F_{2} L}{2 E A}+\alpha \Delta T L \\
& e_{2} \\
\end{array}
$$

Compatibility

$$
\begin{aligned}
& e_{1} \xrightarrow{----\theta_{\Theta}-\cdots} 1 \\
& \tan (\theta)=\frac{e_{1}}{2 L}=-\frac{e_{2}}{L}
\end{aligned}
$$

Solve

$$
\begin{align*}
& e_{1}=-2 e_{2} \\
& \frac{F_{1} L}{2 E A}=-2\left[\frac{F_{2} L}{2 E A}+\alpha \Delta T L\right] \\
& \frac{F_{1} L}{2 E A}=-2\left[\frac{2 F_{1} L}{2 E A}+\alpha \Delta T L\right] \\
& F_{1}=-4 F_{1}-4 \alpha \Delta T E A \\
& F_{1}=-\left(\frac{4}{5}\right) \alpha \Delta T E A \quad F_{2}=-\left(\frac{8}{5}\right) \alpha \Delta T E A \\
& \sigma_{1}=-\left(\frac{2}{5}\right) \alpha \Delta T E \quad \sigma_{2}=-\left(\frac{8}{5}\right) \alpha \Delta T E \tag{2}
\end{align*}
$$

(e)

Exam 1

February 22, 2023
Name (Print) \qquad

PROBLEM \#2 (25 points)

A torsion assembly is rigidly secured at A and C and has an applied torque of T at rigid connector B . A solid shaft with a diameter of 8 D and a shear modulus of 2 G connects A and B . B and C are connected with a bimetallic torsion member with an inner metal with a diameter of 6 D and a modulus of 4 G and an outer metal with an outer diameter of 10D and a modulus of G.
(a) Draw the free body diagram for the assembly.
(b) Write the equilibrium equation(s) for the assembly.
(c) Is the assembly determinate or indeterminate?
(d) Find the torques in each member in terms of L, D, G, and/or T.
(e) Find the rotation of connector B in terms of L, D, G, and/or T.

(a) FBD

(b) Equilibrium

$$
\begin{aligned}
& V_{B}=-T-T_{1}+T_{2}+T_{3}=0 \\
& \Sigma T_{B}-(4)
\end{aligned}
$$

(c) Assembly is isindeterminatel (3 unknowns and 1 equation). (1)!
(d) Torque-Twist

$$
\begin{gather*}
I_{p 1}=\left(\frac{\pi}{2}\right)\left(\frac{8 D}{2}\right)^{4}=128 \pi D^{4} \quad \Delta \phi_{1}=\frac{T_{1} L_{1}}{G_{1} I_{P 1}}=\frac{T_{1}(2 L)}{2 G I_{p 1}}=\frac{T_{1} L}{128 \pi G D^{4}} \\
I_{p 2}=\left(\frac{\pi}{2}\right)\left(\frac{6 D}{2}\right)^{4}=\frac{81}{2} \pi D^{4} \quad \Delta \phi_{2}=\frac{T_{2} L_{2}}{G_{2} I_{P 2}}=\frac{T_{2} L}{4 G I_{p 2}}=\frac{T_{2} L}{168 \pi G D^{4}} \\
I_{p 3}=\left(\frac{\pi}{2}\right)\left[\left(\frac{10 D}{2}\right)^{4}-\left(\frac{6 D}{2}\right)^{4}\right]=272 \pi D^{4} \quad \Delta \phi_{3}=\frac{T_{3} L_{3}}{G_{3} I_{P 3}}=\frac{T_{3} L}{G I_{p 1}}=\frac{T_{3} L}{272 \pi G D^{4}}
\end{gather*}
$$

Compatibility

Solve

$\frac{T_{1} L}{128 \pi G D^{4}}+\frac{\bar{T}_{2} L}{168 \pi G D^{4}}=0$	
$T_{1}=-\frac{128 T_{2}}{168}$	
$\frac{T_{2} L}{168 \pi G D^{4}}=\frac{T_{3} L}{272 \pi G D^{4}}$	
$T_{3}=\frac{272 T_{2}}{168}$	
$0=-T-T_{1}+T_{2}+T_{3}$	
$T=-\left(-\frac{128 T_{2}}{168}\right)+T_{2}+\frac{272 T_{2}}{168}$	
$T_{2}=\left(\frac{168}{562}\right) T \quad T_{1}=-\left(\frac{128}{562}\right) T \quad T_{3}=\left(\frac{272}{562}\right) T$	

(e) $\quad \phi_{B}=\Delta \phi_{1}=-\Delta \phi_{2}=-\Delta \phi_{3}$

$$
\begin{align*}
& \phi_{B}=\frac{T_{1}(2 L)}{2 G I_{p 1}}=\frac{T_{1} L}{128 \pi G D^{4}} \tag{2}\\
& \phi_{B}=\left(-\frac{128}{562}\right) \frac{L}{128 \pi G D^{4}}=\frac{-T L}{562 \pi G D^{4}} \tag{2}
\end{align*}
$$

Exam 1
February 22, 2023
Name (Print)
Solation

PROBLEM \#3 (25 points)
The cantilever rectangular box beam is subjected to the loading shown below.
a) Determine the reactions on the beam at the wall
b) Determine the normal stress at the wall at point K and point H of the cross section.
c) Determine the shear stress at the wall at point K and point H of the cross section.
d) Show the normal and shear stresses obtained in parts (b) and (c) with the proper orientation on the stress elements shown below.

b) $I_{z z}=I_{\text {big rectangle }}-I_{\text {small rectangle }} a$

$$
\begin{aligned}
& =\frac{(b)(2 b)^{3}}{12}-\frac{(b / 2)(b)^{3}}{12}=\frac{b^{4}}{12}\left(8-\frac{1}{2}\right) \\
& I_{z z}=\frac{5}{8} b^{4} \\
& \sigma_{K}=-\frac{(-P L)\left(\frac{3 b}{4}\right)}{\frac{5}{8} b^{H}}=\frac{6 P L}{5 b^{3}}=\sigma_{K} \\
& \sigma_{H}=-\frac{\left(-P_{C}\right)(0)}{\frac{5}{8} b^{4}}=0=\sigma_{H} \\
& \text { c) } \tau_{k}=\frac{V A_{k}^{*} \bar{y}_{k}^{*}}{I t_{k}} \\
& A_{k}^{*}=(b)\left(\frac{b}{4}\right)=\frac{b^{2}}{4} \\
& y_{k}^{*}=\frac{b}{2}+\frac{b}{4}+\frac{b}{8}=\frac{7 b}{8} \\
& \tau_{k}=\frac{(P)\left(\frac{b^{2}}{4}\right)\left(\frac{7 b}{8}\right)}{\left(\frac{5}{8} b^{4}\right) b}=\frac{t_{k}=b}{\frac{7}{20} \frac{p}{b^{2}}=\tau_{k}} \\
& \tau_{H}=\frac{V A_{H}^{*} \bar{y}_{H}^{*}}{I t_{H}} \\
& A_{H}^{*} \bar{y}_{H}^{*}=\underbrace{A_{\text {ret }}^{*}}_{\text {full rect }} \underline{y}_{\text {full rect }}^{*}-A_{\text {empty }}^{*} r \text {. } \bar{y}_{\text {empty }}^{*} r \text {. } \\
& =(b)(b)\left(\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)\left(\frac{b}{2}\right)\left(\frac{b}{4}\right)=\frac{7}{16} b^{3}
\end{aligned}
$$

ME 323 - Mechanics of Materials
Exam 1
February 22, 2023
Name (Print)

$$
\begin{gathered}
t_{H}=\frac{b}{4}+\frac{b}{4}=\frac{b}{2} \\
\tau_{H}=\frac{(P)\left(\frac{7}{16} b^{3}\right)}{\left(\frac{5}{8} b^{4}\right) \frac{b}{2}}=\frac{7}{5} \frac{P}{b^{2}}=\tau_{H}
\end{gathered}
$$

Exam 1

February 22, 2023
Name (Print) \qquad

PROBLEM \#4 - PART A (4 points)

A block is fully constrained in the x direction and is free to expand in the y and z (out of paper) directions. The block is initially stress free at room temperature. The temperature of the block is increased by $\Delta \mathrm{T}$. The coefficient of thermal expansion is α, the modulus of elasticity is E and the Poisson's ratio is v.

Which of the following statements about stresses and strains is correct?

σ_{x}				σ_{y}
ε_{y}				
(a)	$-\alpha E \Delta T$	0	$\alpha \Delta T$	$v \varepsilon_{x}$
(b)	$-\alpha E \Delta T$	0	0	$(1+v) \alpha \Delta T$
(c)	$-\alpha E \Delta T$	0	$-v \varepsilon_{y}$	0
(d)	None of the above			

$$
\begin{aligned}
& \epsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(f_{y}^{0}+f_{z}^{0}\right)\right]+\alpha \Delta T=0 \\
& \sigma_{x}=-E \alpha \Delta T \\
& \epsilon_{y}=\frac{1}{E}\left[f_{y}^{0}-v\left(\sigma_{x}+f_{z}^{0}\right)\right]+\alpha \Delta T=0 \\
& \epsilon_{y}=\frac{1}{E}[-\gamma(-\ell \alpha \Delta T)]+\alpha \Delta T=\alpha \Delta T(1+r)
\end{aligned}
$$

Exam 1

February 22, 2023
Name (Print) \qquad

PROBLEM \#4 - PART B (6 points)

The rigid, L-shaped bar DHK is pinned to ground at H, and identical elastic links (1) and (2) (having the same Young's modulus E, cross-sectional area A, length L and coefficient of thermal expansion α), are connected between D and B , and between Q and K , respectively. Links (1) and (2) are horizontal and vertical, respectively. The temperature of link (2) is decreased by an amount of ΔT, whereas the temperature of link (1) is held constant. Let ε_{1} and ε_{2} be the axial strains in (1) and (2), respectively, and σ_{1} and σ_{2} be the corresponding axial stresses in the links.

Circle the correct responses below:

2 points:

(a) $\left|\sigma_{1}\right|>\left|\sigma_{2}\right|$
b) $\left|\sigma_{1}\right|=\left|\sigma_{2}\right|$
c) $\left|\sigma_{1}\right|<\left|\sigma_{2}\right|$

2 points:
(a) σ_{1} and ε_{1} have the same signs
b) σ_{1} and ε_{1} are both zero
c) σ_{1} and ε_{1} have opposite signs

2 points:
a) σ_{2} and ε_{2} have the same signs
b) σ_{2} and ε_{2} are both zero
C) σ_{2} and ε_{2} have opposite signs

Exam 1

February 22, 2023
Name (Print) \qquad

PROBLEM 4 - PART C (4 points)

A rod is made up of solid, circular cross-sectioned elements (1) and (2) and (3), with (1) and (2) joined with a rigid connector C, and (2) and (3) joined by rigid connector D. All three elements are made of the same type of steel, having a Young's modulus of $E_{\text {steel. }}$ A load P acts in the axial direction on connector D. Let F_{1}, F_{2} and F_{3} be the axial load (force) carried by, and σ_{1}, σ_{2} and σ_{3} be the axial stresses in, elements (1), (2) and (3), respectively.

Circle the correct responses below:

2 points:

a) $\left|F_{1}\right|>\left|F_{2}\right|$
(b) $\left|F_{1}\right|=\left|F_{2}\right|$
c) $\left|F_{1}\right|<\left|F_{2}\right|$

2 points:

a) $\left|F_{2}\right|>\left|F_{3}\right|$
b) $\left|F_{2}\right|=\left|F_{3}\right|$
c) $\left|F_{2}\right|<\left|F_{3}\right|$

Exam 1

February 22, 2023
Name (Print) \qquad

PROBLEM 4 - PART D (4 points)

For the points M and N shown below indicate whether each component of the state of stress is:

$$
\begin{aligned}
& \star=0 \text { (equal to zero) } \\
& \gg 0 \text { (greater than zero) } \\
& <0 \text { (less than zero) }
\end{aligned}
$$

Elastic members (1) and (2) have different material properties, and the rigid plate that connects them is loaded with an external torque T.

	Point M	Point N
σ_{x}	$\boldsymbol{0}$	$\boldsymbol{0}$
σ_{y}	$\boldsymbol{0}$	$\boldsymbol{0}$
σ_{z}	$\boldsymbol{0}$	$\boldsymbol{0}$
$\tau_{x y}$	$\boldsymbol{0}$	$\boldsymbol{0}$
$\tau_{x z}$	$<\boldsymbol{0}$	$\boldsymbol{0}$
$\tau_{y z}$	$\boldsymbol{0}$	$\boldsymbol{0}$

Exam 1

February 22, 2023
Name (Print) \qquad

PROBLEM 4 - PART E (3 points)

For the points M and N shown below indicate whether each component of the state of stress is:

* $=0$ (equal to zero)
* >0 (greater than zero)
* <0 (less than zero)

Elastic members (1) and (2) have different material properties, and the rigid plate that connects them is loaded with an external axial force P.

	Point M	Point N
σ_{x}	<0	$\geqslant 0$
σ_{y}	0	0
σ_{z}	0	0
$\tau_{x y}$	0	0
$\tau_{x Z}$	0	0
$\tau_{y z}$	0	0

Exam 1

February 22, 2023
Name (Print) \qquad

PROBLEM \#4 - PART F (4 points)

For the gear assembly shown subjected to the torque T, indicate (circle) if the equations below are True or False.

