July 3, 2018

PROBLEM NO. 1-25 points max.

Rigid disk C has a weight of W. This disk is supported from the top by element (1) and from the bottom by elements (2) and (3). Elements (1) and (3) are solid rods with a diameter of d, and lengths of L and $2 L$, respectively. Element (2) has a tubular cross section with inner and outer diameters of $2 d$ and $3 d$, respectively, and has a length of L. All elements are made up of the same material with a Young's modulus of E. The weights of these three elements are negligible compared with the weight of disk C; ignore their weights in your analysis.

For this problem, derive the three equations that are needed in solving for the axial loads (forces) carried by elements (1), (2) and (3). These equations should be written in terms only these three forces and the weight W. You are NOT asked to solve these equations.
Clearly label the steps of equilibrium, forcelelongation and
 compatibility used in your analysis.

1. Equilibrium

$$
\begin{equation*}
\sum F=F_{1}-F_{2}-F_{3}-W=0 \Rightarrow F_{1}-F_{2}-F_{3}=W \tag{1}
\end{equation*}
$$

INDETERMINATE since we have one equation and three unknowns.

2. Force/elongation

$$
\begin{align*}
& e_{1}=\frac{F_{1} L}{E A_{1}} ; \quad A_{1}=\pi\left(\frac{d}{2}\right)^{2}=\frac{1}{4} \pi d^{2} \tag{2}\\
& e_{2}=\frac{F_{2} L}{E A_{2}} ; \quad A_{2}=\pi\left[\left(\frac{3 d}{2}\right)^{2}-\left(\frac{2 d}{2}\right)^{2}\right]=\frac{5}{4} \pi d^{2} \tag{3}\\
& e_{3}=\frac{F_{3}(2 L)}{E A_{3}} ; \quad A_{3}=\pi\left(\frac{d}{2}\right)^{2}=\frac{1}{4} \pi d^{2} \tag{4}
\end{align*}
$$

3. Compatibility

$$
\begin{align*}
& u_{C}=u_{H}+e_{3}=e_{3} \\
& u_{B}=u_{C}+e_{1}=e_{3}+e_{1}=0 \Rightarrow e_{1}=-e_{3} \tag{5}
\end{align*}
$$

Also, $e_{3}=e_{2}$

Combining equations (2)-(6) gives:

$$
\begin{align*}
& \frac{4 F_{1} L}{E \pi d^{2}}=-\frac{8 F_{3} L}{E \pi d^{2}} \Rightarrow F_{1}=-2 F_{3} \tag{7}\\
& \frac{4 F_{2} L}{5 E \pi d^{2}}=\frac{8 F_{3} L}{E \pi d^{2}} \Rightarrow F_{2}=10 F_{3} \tag{8}
\end{align*}
$$

4. Solve

Need to solve equations (1), (2) and (3) for the member loads.
Not required:

$$
\begin{aligned}
& -2 F_{3}-10 F_{3}-F_{3}=W \Rightarrow F_{3}=-\frac{1}{13} W \quad(\text { compression }) \\
& F_{1}=-2\left(-\frac{W}{13}\right)=\frac{2}{13} W \quad(\text { tension }) \\
& F_{2}=10\left(-\frac{W}{13}\right)=-\frac{10}{13} W \quad(\text { compression })
\end{aligned}
$$

July 3, 2018

PROBLEM NO. 2-25 points max.

The shaft system shown above is made up of shaft components (1), (2) and (3). Components (2) and (3) are solid with outer diameters of $2 d$ and d, respectively, and lengths L and $2 L$, respectively. Component (1) is tubular with inner and outer diameters of d and $2 d$, respectively. Each component is made up of a material with a shear modulus of G. Shaft components (1) and (2) are connected through a meshing gear pair CD, and shaft components (2) and (3) are connected through a meshing gear pair DH . Torques of $T, 2 T$ and $3 T$ act on the rigid gears C, D and H , respectively.
For this problem, derive the three equations that are needed in solving for the shaft torques carried by components (1), (2) and (3). These equations should be written in terms only these three torques and the torque parameter T. You are NOT asked to solve these equations.
Clearly label the steps of equilibrium, torque/rotation and compatibility used in your analysis.
view from left side (showing only forces causing a moment of the gear centers)

1. Equilibrium

Gear C: $\sum M=T+T_{1}+F_{C D}(2 d)=0 \quad \Rightarrow \quad F_{C D}=-\frac{1}{2 d}\left(T+T_{1}\right)$
Gear D: $\sum M=F_{C D}\left(\frac{3}{2} d\right)+F_{D H}\left(\frac{3}{2} d\right)-2 T-T_{2}=0$
Gear H: $\quad \sum M=F_{D H}(d)-3 T-T_{3}=0 \Rightarrow F_{D H}=\frac{1}{d}\left(3 T+T_{3}\right)$
Combining equations (1)-(3):

$$
\begin{equation*}
-\frac{1}{2 d}\left(T+T_{1}\right)\left(\frac{3}{2} d\right)+\frac{1}{d}\left(3 T+T_{3}\right)\left(\frac{3}{2} d\right)-2 T-T_{2}=0 \Rightarrow-3 T_{1}-4 T_{2}+6 T_{3}=7 T \tag{4}
\end{equation*}
$$

The problem is INDETERMINATE since we have one equation and three unknowns.

2. Torque/rotation

$$
\begin{array}{ll}
\Delta \phi_{1}=\frac{T_{1} L}{G I_{P 1}} ; \quad I_{P 1}=\frac{\pi}{2}\left(\frac{2 d}{2}\right)^{4}-\frac{\pi}{2}\left(\frac{d}{2}\right)^{4}=\frac{15}{32} \pi d^{4} \\
\Delta \phi_{2}=\frac{T_{2} L}{G I_{P 2}} ; \quad I_{P 2}=\frac{\pi}{2}\left(\frac{2 d}{2}\right)^{4}=\frac{1}{2} \pi d^{4} \\
\Delta \phi_{3}=\frac{T_{3}(2 L)}{G I_{P 3}} ; \quad I_{P 3}=\frac{\pi}{2}\left(\frac{d}{2}\right)^{4}=\frac{1}{32} \pi d^{4} \tag{7}
\end{array}
$$

3. Compatibility

$$
\begin{align*}
& \left(\frac{4 d}{2}\right) \Delta \phi_{1}=\left(\frac{3 d}{2}\right) \Delta \phi_{2} \Rightarrow \Delta \phi_{2}=\frac{4}{3} \Delta \phi_{1} \tag{8}\\
& \left(\frac{3 d}{2}\right) \Delta \phi_{2}=-\left(\frac{2 d}{2}\right) \Delta \phi_{3} \Rightarrow \Delta \phi_{2}=-\frac{2}{3} \Delta \phi_{3} \tag{9}
\end{align*}
$$

Combining equations (5)-(9):

$$
\begin{align*}
& \frac{2 T_{2} L}{G \pi d^{4}}=\frac{4}{3}\left(\frac{32 T_{1} L}{15 G \pi d^{4}}\right) \Rightarrow T_{1}=\frac{45}{64} T_{2} \tag{10}\\
& \frac{2 T_{2} L}{G \pi d^{4}}=-\frac{2}{3}\left(\frac{64 T_{3} L}{G \pi d^{4}}\right) \Rightarrow T_{3}=-\frac{3}{64} T_{2} \tag{11}
\end{align*}
$$

4. Solve

Solve equations (4), (10) and (11) for the component torques.
Not required:

$$
-3\left(\frac{45}{64} T_{2}\right)-4 T_{2}+6\left(-\frac{3}{64} T_{2}\right)=7 T \Rightarrow T_{2}=-\frac{448}{409} T
$$

and:

$$
\begin{aligned}
& T_{1}=-\frac{315}{409} T \\
& T_{3}=\frac{21}{409} T
\end{aligned}
$$

July 3, 2018

PROBLEM NO. 3-25 points max.

A rigid disk is pinned to ground at its center O. Rod elements (1), (2) and (3) are pinned to the disk at radial distances of $2 R, R$ and R, respectively. Each rod has the same crosssectional area A and is made up of a material having a Young's modulus of E and a thermal coefficient of expansion of α. For the configuration shown above, elements (1) and (2) are vertically aligned, whereas element (3) is horizontally aligned. With the rod elements being initially unstressed, the temperatures of elements (1) and (3) are increased by ΔT and $2 \Delta T$, respectively, with the temperature of element (2)
 being held constant.
a) Using appropriate $\mathrm{FBD}(\mathrm{s})$, write down the equilibrium equation(s) relating the axial loads carried by elements (1), (2) and (3).
b) Write down the load/elongation equations for the members.
c) Write down the appropriate compatibility equations.
d) Determine the axial load carried by each element. Write your final answers in terms of the parameters of $\alpha, \Delta T, E$ and A.
e) Is the strain in element (1) compressive, tensile or zero? Provide a written explanation.
f) Is the stress in element (1) compressive, tensile or zero? Provide a written explanation.

1. Equilibrium

$$
\begin{equation*}
\sum M_{O}=-F_{1}(2 R)+F_{2}(R)+F_{3}(R)=0 \Rightarrow-2 F_{1}+F_{2}+F_{3}=0 \tag{1}
\end{equation*}
$$

The problem is INDETERMINATE since we have one equation and three unknowns.

2. Force/elongation

$$
\begin{align*}
& e_{1}=\frac{F_{1} L}{E A}+\alpha \Delta T L \tag{2}\\
& e_{2}=\frac{F_{2} L}{E A} \tag{3}\\
& e_{3}=\frac{F_{3}(2 L)}{E A}+\alpha(2 \Delta T)(2 L)=\frac{2 F_{3} L}{E A}+4 \alpha \Delta T L \tag{4}
\end{align*}
$$

3. Compatibility

For a CCW rotation of $\Delta \theta$ of the disk:

$$
\begin{align*}
& \Delta \theta=\frac{e_{1}}{2 R}=-\frac{e_{2}}{R} \Rightarrow e_{1}=-2 e_{2} \tag{5}\\
& \Delta \theta=-\frac{e_{2}}{R}=-\frac{e_{3}}{R} \Rightarrow e_{3}=e_{2} \tag{6}
\end{align*}
$$

Combining equations (2)-(6) gives:

$$
\begin{align*}
& \frac{F_{1} L}{E A}+\alpha \Delta T L=-2 \frac{F_{2} L}{E A} \Rightarrow F_{1}=-2 F_{2}-\alpha \Delta T E A \tag{7}\\
& \frac{2 F_{3} L}{E A}+4 \alpha \Delta T L=\frac{F_{2} L}{E A} \Rightarrow F_{3}=\frac{1}{2} F_{2}-2 \alpha \Delta T E A \tag{8}
\end{align*}
$$

4. Solve

Solve equations (1), (7) and (8):

$$
\begin{aligned}
& -2\left(-2 F_{2}-\alpha \Delta T E A\right)+F_{2}+\left(\frac{1}{2} F_{2}-4 \alpha \Delta T E A\right)=0 \Rightarrow F_{2}=0 \\
& F_{1}=-\alpha \Delta T E A \\
& F_{3}=-2 \alpha \Delta T E A
\end{aligned}
$$

From this:

$$
\begin{aligned}
& \sigma_{1}=\frac{F_{1}}{A}=-\alpha \Delta T E \quad \text { (compressive) } \\
& \varepsilon_{1}=\frac{F_{1}}{E A}+\alpha \Delta T=-\alpha \Delta T+\alpha \Delta T=0 \quad \text { (zero strain) }
\end{aligned}
$$

ME 323 Examination \# 1

July 3, 2018

PROBLEM NO. 4 - PART A -3 points max.

The following compatibility equation is to be used to relate the elemental deformations $e_{i} ; i=1,2,3$ to the horizontal and vertical components of displacement of joint $\mathrm{C}\left(u_{C}\right.$ and $\left.v_{C}\right)$ of the truss shown: $e_{i}=u_{C} \cos \theta_{i}+v_{C} \sin \theta_{i}$. Circle the most accurate description of the elemental angles θ_{i} :

Element 1:

a) $0 \leq \theta_{1}<90^{\circ}$
b) $90^{\circ} \leq \theta_{1}<180^{\circ}$
c) $180^{\circ} \leq \theta_{1}<270^{\circ}$
d) $270^{\circ} \leq \theta_{1}<360^{\circ}$

Element 2:

a) $0 \leq \theta_{2}<90^{\circ}$
b) $90^{\circ} \leq \theta_{2}<180^{\circ}$
c) $180^{\circ} \leq \theta_{2}<270^{\circ}$
d)

$$
270^{\circ} \leq \theta_{2}<360^{\circ}
$$

Element 3:

a) $0 \leq \theta_{3}<90^{\circ}$
b) $90^{\circ} \leq \theta_{3}<180^{\circ}$
c) $180^{\circ} \leq \theta_{3}<270^{\circ}$
d) $270^{\circ} \leq \theta_{3}<360^{\circ}$

July 3, 2018

PROBLEM NO. 4 - PART B - 6 points max.

A shaft carrying a torque of T has the cross section shown above, with (1) and (2) being made up of a materials with shear moduli of $3 G$ and G, respectively.
a) On the figure above, make a sketch of the shear stress distribution on the cross section.
b) Identify on the sketch the location on the cross section having the largest shear stress in the shaft.

July 3, 2018

PROBLEM NO. 4 -PART C - 6 points max.

A block of material having a Young's modulus of E and Poisson's ratio of v is placed between two smooth horizontal surfaces. A uniform, compressive normal stress of σ_{0} is applied to the vertical surfaces of the block. The block is unconstrained in the z-direction. What are the strains in the x - and y-directions for the block?

$$
\begin{aligned}
& \varepsilon_{y}=0 \Rightarrow 0=\frac{1}{E}\left(\sigma_{y}-v \sigma_{x}\right) \Rightarrow \sigma_{y}=v \sigma_{x}=-v \sigma_{0} \\
& \varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}\right)=\frac{1}{E}\left[-\sigma_{0}-v\left(-v \sigma_{0}\right)\right]=-\frac{\sigma_{0}}{E}\left(1-v^{2}\right)
\end{aligned}
$$

July 3, 2018

PROBLEM NO. 4 - PART D - 4 points max.

You are reviewing work by a design team at your consulting firm related to the truss bracket shown above. The team's work indicates that if the Young's modulus for element (2) in the truss is doubled, the stress in that element is decreased by a factor of two. You know that this result is not correct. Provide an explanation here to your design team as to why the result is incorrect.

Explanation: The truss is determinate. Member loads are found from equilibrium alone. Therefore, stress does not depend on material properties.

July 3, 2018

PROBLEM NO. 4 - PART E - 3 points max.

A structure is made up of axial members (1) and (2) shown above with a load of P acting at the rigid connector C. You are asked to re-design the structure by changing the length b of member (2) in order to decrease the normal stress in that member. You are not able to change any other aspect of the design such as the material or the cross sectional area of the member. Circle the answer below that describes best your design options.
a) A decrease in the length b of member (2) will decrease the normal stress in the element.
b) An increase in the length b of member (2) will decrease the normal stress in the element.
c) Changing the length b of member (2) cannot change the normal stress in the element.

Explanation: The problem is indeterminate. Increasing the length of (2) will decrease its stiffness. This decrease in stiffness will decrease the load carried by member (2), thereby reducing its stress.

Alternately:
$\left|e_{1}\right|=\left|e_{2}\right| \Rightarrow \frac{F_{1} a}{E_{1} A_{1}}=\frac{\left|F_{2}\right| b}{E_{2} A_{2}} \Rightarrow \frac{\left(P-\left|F_{2}\right|\right) a}{E_{1} A_{1}}=\frac{\left|F_{2}\right| b}{E_{2} A_{2}} \Rightarrow\left|F_{2}\right|=\frac{P a}{a+b\left(E_{1} A_{1}\right) /\left(E_{2} A_{2}\right)}$
Increasing b decreases element load and stress.

July 3, 2018

PROBLEM NO. 4 - PART F - 3 points max.

An aluminum alloy is known to have a Young modulus, a proportional limit, a yield strength and an ultimate strength of $E=10 \mathrm{ksi}, \sigma_{P L}=38 \mathrm{ksi}, \sigma_{Y}=40 \mathrm{ksi}$ and $\sigma_{U}=45 \mathrm{ksi}$, respectively. A rod having a cross-section area of $A=2$ in 2 and length $L=6$ in is loaded with an axial force P.
a) What is the largest load P that can be applied to the bar such that the following relationship exists between axial stress and axial strain: $\sigma=E \varepsilon$?
For the linear range, we need $P / A=\sigma<\sigma_{P L} \Rightarrow P<A \sigma_{P L}=76$ kips
b) What is the largest load P that can be applied to the bar such that a maximum of 0.1% offset strain remains after the loading is removed?
For this, we need $P / A=\sigma<\sigma_{Y} \Rightarrow P<A \sigma_{Y}=80 \mathrm{kips}$
c) What is the largest load P that can be applied to the bar such that the specimen does not experience necking?
To prevent necking, we need $P / A=\sigma<\sigma_{U} \Rightarrow P<A \sigma_{U}=90$ kips

