| Problem ||

$$
\begin{aligned}
& \sum F_{7}=0 \\
& R_{A}+R_{B}=24 \\
& \left.\Sigma M\right|_{A}=0
\end{aligned}
$$

$$
\begin{aligned}
& R_{B} \cdot 12-2415=0 \\
& R_{B}=\frac{24 \cdot 15}{12}=30 \\
& R_{A}=24-R_{B} \\
& R_{A}=-6
\end{aligned}
$$

M(kip ft)

$$
\begin{aligned}
& \tau=\frac{V Q}{I t} \\
& V_{\text {max }} \text { at } x=12 \\
& V_{\text {max }}=24 \mathrm{kip} \\
& V_{x}=-\frac{M y}{I} \\
& M_{\text {max }} \mid=72 \text { kip. ft }
\end{aligned}
$$

$\sigma_{\text {max }}$ at $x=12 \quad y=\frac{h}{2}$

$$
I=\frac{b h^{3}}{12}=\frac{0.25 f t \cdot h^{3}}{12}
$$

$$
\begin{aligned}
&|\sigma(x=12, y=h / 2)|= \sigma_{\max }= \\
& 0.25 \mathrm{ft} \mathrm{~h}^{82} \frac{72 \mathrm{kip} \cdot \mathrm{ft}}{12} \cdot \frac{\mathrm{k}}{2} . \\
& \sigma_{\operatorname{Max}}=\frac{1728 \mathrm{kip}}{\mathrm{~h}^{2}} \\
& \sigma_{\max }<\sigma_{\text {allow }}=21 \mathrm{ksi} \\
& \frac{172 s}{h^{2}}<21 \quad \rightarrow \quad h>\sqrt{\frac{1728}{21}} \\
& h>9.07 \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
& \tau^{\max }(x=12, y=0)=\frac{V^{\max } \cdot 3 \cdot \frac{h^{2}}{3}}{Q=\bar{y} \cdot A=\frac{h}{4} \cdot \frac{h}{2} \cdot 3=\frac{3 \cdot h^{3}}{12 \cdot 4} \cdot 3} \\
& \\
& =\frac{24}{2^{8 h} \cdot 14}=\frac{12}{h}
\end{aligned}
$$

$\tau^{\text {max }} \leqslant 1 k \operatorname{si}$

$$
\frac{12}{h} \leqslant 1 \rightarrow h \geqslant 12 i n
$$

ME 323 - Mechanics of Materials
Midterm \#2
March $30^{\text {th }}, 2022$

PURDUE
UNIVERSITY
Name (Print)

(Last)
(First)
PROBLEM \# 2 (25 points)
The beam BCD is fixed to the wall at B and supported by a roller at C. A concentrated moment M_{o} is applied at D. The beam has Young's modulus \boldsymbol{E} and second moment of area \boldsymbol{I}.
a) Draw a free-body diagram of the entire beam, and write down the equilibrium equations.
b) Use the second-order integration method to find the slope $\mathrm{v}^{\prime}(\mathrm{x})$ and deflection $\mathrm{v}(\mathrm{x})$ of each segment of the beam. These can be left in terms of the unknown support reactions.
c) Write down the relevant boundary conditions and continuity conditions for the beam.
d) Use the boundary/continuity conditions to determine the reactions at B and C in terms of $\boldsymbol{M}_{\boldsymbol{o}}$ and \boldsymbol{L}.
e) Determine the deflection of the free end D. Sketch the deflection curve over the length of the beam. The sketch does not need to be exact. Show enough detail to clearly indicate the boundary conditions.

- 3 solutions are provided.
- The FBD 4 equilibrium eqn's for the entire structure are the same
- The Boundary \& Continuity conditions are the som for all 3 sold's
- The sketch of the deflection curve is the same.

ME 323 - Mechanics of Materials
\qquad
PROBLEM \# 2 CONT.
$F B D$ of entire beam:

$$
\begin{align*}
& \Sigma m_{B}=-m_{B}+C_{y} L+m_{0}=0 \\
& \Sigma m_{B}=m_{0}+C_{y} L
\end{align*}
$$

Bu's: $v(0)=v_{1}(0)=0$

$$
\begin{aligned}
& v^{\prime}(0)=v_{1}^{\prime}(0)=\theta_{1}(0)=0 \\
& v(L)=v_{1}(L)=v_{2}(L)=0
\end{aligned}
$$

$$
v_{1}^{\prime}(L)=v_{2}^{\prime}(L)
$$

ME 323 - Mechanics of Materials
Midterm \#2
March $30^{\text {th }}, 2022$
\neg PURDUE

UNIVERSITY
School of Mechanical Engineering
Name (Print) SOLUTION 1
1

PROBLEM \# 2 CONT.
Solution (1)- Is e definite integrals
Section BC $0<x<L$

$$
\begin{align*}
& m_{B}\left(\underset{T-x}{ } \rightarrow v_{v_{1}}^{H} \quad \sum m_{1}(x)=m_{B}+B_{y} x=E I \frac{d \theta_{1}}{d x}\right. \\
& B_{y} \\
& \theta_{1}(x)=\theta_{1}(0)+\frac{1}{E I} \int_{0}^{x}\left(m_{B}+B_{y} x\right) d x \\
&=\frac{1}{E I}\left[m_{B} x+m_{y} \frac{x^{2}}{2}\right]=\frac{d v_{1}}{d x} \\
& v_{1}(x)=v_{1}(0)+\frac{1}{E I} \int_{0}^{x}\left(m_{B} x+B_{y} \frac{x^{2}}{2}\right) d x \\
&=\frac{1}{v_{E} I}\left[m_{B} \frac{x^{2}}{2}+B_{y} \frac{x^{3}}{6}\right] \\
& \theta_{1}(L)=\frac{1}{E I}\left[m_{B} L+B_{y} \frac{L^{2}}{2}\right]=\theta_{C} \\
& v_{1}(L)=\frac{1}{E I}\left[m_{B} \frac{L_{1}}{2}+B_{y} \frac{L^{3}}{6}\right]=0
\end{align*}
$$

ME 323 - Mechanics of Materials
Midterm \#2
March $30^{\text {th }}, 2022$
\qquad
PROBLEM \# 2 CONT.

$$
\begin{aligned}
& m_{B}=-B_{y} \frac{L}{3} \\
& \text { use }(1) \neq(2) \\
& m_{0}+C_{y} L=C_{y} \frac{L}{3} \quad C_{y}=-\frac{3 m_{0}}{2 L} \\
& B_{y}=-C_{y}=\frac{3 m_{0}}{2 L} \\
& M_{B}=m_{0}-\frac{3 m_{0}}{2 L} L=-\frac{m_{0}}{2}=m_{B}
\end{aligned}
$$

Section CD $L<x<2 L$

$$
\begin{aligned}
& m_{B}\left(\frac{\text { Section }}{\frac{R}{R} T_{c_{y}}} f_{V_{2}}^{k} m_{2}\right. \\
& \sum m_{k}=m_{2}-m_{B}-B_{y} x-C_{y}(x-L)=0 \\
& m_{2}(x)=m_{B}+B_{y} x+c_{y}(x-L)=E I \frac{d \theta_{2}}{d x}
\end{aligned}
$$

ME 323 - Mechanics of Materials
Midterm \#2
\Rightarrow PURDUE
\qquad

$$
\begin{align*}
& \begin{aligned}
& \text { PROBLEM \#2 CONT. } \\
& \theta_{2}(x)= \underbrace{\theta_{2}(L)}_{\theta_{C}}+\frac{1}{E I} \int_{L}^{x}\left[m_{B}+B_{y} x+C_{y} x-C_{y} L\right) d x \\
& \theta_{2}(x)=\theta_{L}+\frac{1}{E I} {\left[m_{B}(x-L)+\frac{B_{y}}{2}\left(x^{2}-L^{2}\right)\right.} \\
&\left.+\frac{C_{y}}{2}\left(x^{2}-L^{2}\right)-C_{y} L(x-L)\right]=\frac{d v_{2}}{d x} \\
& v_{2}(x)= v_{2}(L)+\int_{L}^{x}\left[\theta_{C}+\frac{1}{E I}\left[m_{B} x-m_{B} L\right.\right.
\end{aligned} \\
& \left.\quad+B_{y} \frac{x^{2}}{2}-\frac{B_{y} L^{2}}{2}+G_{y} \frac{x^{2}}{2}-C_{y} L^{2}-C_{y} L x+C_{y} L^{2}\right] d x \\
& v_{2}(x)=\theta_{C}(x-L)+\frac{1}{E I}\left[\frac{m_{B}}{2}\left(x^{2}-L^{2}\right)-m_{B} L(x-L)\right. \\
& +\frac{B y}{6}\left(x^{3}-L^{3}\right)-\frac{B_{y} L^{2}}{2}(x-L)+\frac{C_{y}}{6}\left(x^{3}-L^{3}\right) \\
& -\frac{C_{y} L^{2}}{2}(x-L)-\frac{C_{y} L}{2}\left(x^{2}-L^{2}\right)+C_{y} L^{2}(x-L)(4)
\end{align*}
$$ where θ_{c} is given by Equ (3).

ME 323 - Mechanics of Materials

Name (Print) \qquad
PROBLEM \# 2 CONT.
In equ(4) replace $x=2 L, \theta_{c}($ ear 3$)$,

$$
\begin{gathered}
m_{B}, B_{y}: C_{y} \\
v_{2}(2 L)=\frac{3}{4} \frac{m_{-} L^{2}}{E I}
\end{gathered}
$$

\qquad Solution 2

PROBLEM \# 2 CONT.
Solution (2) - MDse indef finite integrals Section $B C \quad 0<x<L$

$$
m_{B}\left[{\underset{T}{\sim}}_{\sim}^{\sim} V_{v_{1}}^{H} \jmath m_{1}\right.
$$

By_{2}

$$
\begin{aligned}
\varepsilon m_{n} & =m_{1}-m_{B}-B_{y} x=0 \\
m_{1}(x) & =m_{B}+B y x=E I s_{1}^{\prime \prime} \\
E I w_{1}^{\prime} & =m_{B} x+B y \frac{x^{2}}{2}+C_{1} \\
E I v_{1} & =m_{B} \frac{x^{2}}{2}+B_{y} \frac{x^{3}}{6}+C_{1} x+C_{2}
\end{aligned}
$$

B.C's at $x=0$

$$
\begin{aligned}
& v_{1}^{\prime}(0)=C_{1}=0 \\
& v_{1}(0)=C_{2}=0 \\
& v_{1}^{\prime}(L)=m_{B} L+B_{y} \frac{L^{2}}{2} \\
& v_{1}(L)=m_{B} \frac{L^{2}}{2}+B_{y} \frac{L^{3}}{6}=0
\end{aligned}
$$

Write $m_{B} \& B_{y}$ in terms of $C y$ (Equ's 142)

$$
C_{y}=-\frac{3 m_{0}}{2 L}=-B_{y} \quad m_{B}=-\frac{m_{0}}{2}
$$

\qquad

PROBLEM \# 2 CONT.
Section CD $L<x<2 L$

$$
\begin{aligned}
& \Sigma m_{k}=m_{2}-m_{B}-B_{y} x-C_{y}(x-2)=0 \\
& m_{2}(x)=m_{B}+B_{y} x+C_{y} x-C_{y} L=E I v_{2}^{\prime \prime} \\
& E I S_{2}^{\prime}=m_{B} x+B_{y} \frac{x^{2}}{2}+C_{y} \frac{x^{2}}{2}-C_{y} L x+C_{3} \\
& E I v_{2}=m_{B} \frac{x^{2}}{2}+B_{y} \frac{x^{3}}{6}+C_{y} \frac{x^{3}}{6}-C_{y} L \frac{x^{2}}{2}+C_{3} x+C_{4}
\end{aligned}
$$

$B C^{\prime} s \in$ Continuity at $x=L$

$$
\begin{aligned}
& v_{2}(L)=0 \quad v_{2}^{\prime}(L)=v_{1}^{\prime}(L) \\
& v_{2}(L)=m_{B} \frac{L^{2}}{2}+B_{y} \frac{L^{3}}{6}+C_{y} \frac{L^{3}}{6}-C_{y} \frac{L^{3}}{2}+C_{3} L+C_{4}=0 \\
& v_{2}^{\prime}(L)=w_{B} L+B_{y} \frac{L^{2}}{2}+C_{y} \frac{L^{2}}{2}-C_{y} L^{2}+C_{3} \\
&=v_{1}^{\prime}(L)=m_{B} L+B_{y} \frac{L^{2}}{2} \\
& \text { solve }:-C_{y} \frac{L^{2}}{2}+C_{3}=0
\end{aligned}
$$

Replace $C_{y}: c_{3}=-\frac{3 m_{0} L}{4}$

Name (Print) \qquad
PROBLEM \# 2 CONT.
Replace C_{3}, m_{B}, B_{y} d G_{y} in $v_{2}(c)=0$
a solve for C_{4}

$$
C_{4}=\frac{m_{0} L^{2}}{4}
$$

Replace $x=26$ in $r_{2}(x)$

$$
v_{2}(2 L)=\frac{3}{4} \frac{M_{0} L^{2}}{R I}
$$

ME 323 - Mechanics of Materials
Midterm \#2
March $30^{\text {th }}, 2022$
\rightarrow PURDUE
UNIVERSITY
Name (Print) $\frac{\text { SOL NTION } 3}{\text { (Last) }}$
PROBLEM \# 2 CONT.
Solution (3)- Use the RHS of the beam
section $B C \quad 0<x<L$

$$
\begin{aligned}
& 2 m_{H}=-m_{1}+c_{y}(L-x)+m_{0}=0 \\
& m_{1}=m_{0}+c_{y}(L-x)=E I v_{1}^{\prime \prime} \\
& E I v_{1}^{\prime}=m_{0} x+c_{y} L x-c_{y} \frac{x^{2}}{2}+c_{1} \\
& E I v_{1}=m_{0} \frac{x^{2}}{2}+C_{y} L \frac{x^{2}}{2}-C_{y} \frac{L^{3}}{6}+C_{1} x+C_{2} \\
& \text { BiC's } \\
& v_{1}^{\prime}(0)=c_{1}=0 \quad v_{1}(0)=c_{2}=0 \\
& v_{1}^{\prime}(L)=\frac{1}{E I}\left[m_{0} L+C_{y} L^{2}-C_{y} \frac{L^{2}}{2}\right] \\
& v_{1}(L)=\frac{1}{E X}\left[m_{0} \frac{L^{2}}{2}+C_{y} \frac{L^{3}}{2}-C_{y} \frac{L^{3}}{6}\right]=0
\end{aligned}
$$

ME 323 - Mechanics of Materials
Midterm \#2
March $30^{\text {th }}, 2022$

PROBLEM \# 2 CONT.
Use equ'd (1) \& (2)
\& solve
Name (Print) \qquad (Last)

$$
C_{y}=-\frac{3}{2} \frac{m_{0}}{L}=-B_{y}
$$

$$
m_{B}=-\frac{M_{0}}{2}
$$

section CD $L<x<2 L$

$$
\begin{aligned}
& \text { m } \quad \sum m_{v_{2}}=m_{0}-m_{2}=0 \\
& m_{2}(x)=m_{0}=E I v_{2}^{\prime \prime} \\
& E I v_{2}^{\prime}=m_{0} x+c_{3} \\
& E I v_{2}=m_{0} \frac{x^{2}}{2}+c_{3} x+c_{4} \\
& \text { Use } v_{2}(L)=v_{1}(L)=0 \\
& v_{2}^{\prime}(L)=v_{1}^{\prime}(L)
\end{aligned}
$$

ME 323 - Mechanics of Materials
Midterm \#2
March $30^{\text {th }}, 2022$
\qquad
PROBLEM \# 2 CONT.

$$
\begin{aligned}
& v_{2}^{\prime}(L)=m_{0} L+c_{3}=v_{1}^{\prime}(L)=m_{0} L+c_{y} L^{2}-c_{y} \frac{L^{2}}{2} \\
& c_{3}=c_{y} \frac{L^{2}}{2}=\left(-\frac{3}{2} \frac{m_{0}}{L}\right)\left(\frac{L^{2}}{2}\right) \\
& c_{3}=-\frac{3}{4} m_{0} L \\
& v_{2}(L)=\frac{m_{0} L^{2}}{2}+c_{3} L+c_{4}=0 \\
& c_{4}=-\left(-\frac{3}{4} m_{0} L^{2}\right)-m_{0} \frac{L^{2}}{2}
\end{aligned}
$$

$$
C_{4}=\frac{m_{0} L^{2}}{4}
$$

$$
\begin{aligned}
& E I v_{2}(2 L)=\frac{m_{0}}{2}\left(4 L^{2}\right)+\left(-\frac{3}{4} m_{0} L\right)(2 L) \\
&+\frac{m_{0} L^{2}}{4} \\
& v_{2}(2 L)=\frac{3 m_{0} L^{2}}{E I}
\end{aligned}
$$

Exam 2: Q3

There are many different ways to do this question (6), so the grading was flexible, but the general procedure is:

1. Find two equilibrium equations.
2. Find $M(x)$ in two sections.
3. Put $M(x)$ in terms of only the redundant load.
4. Enforce BC using Castigliano's equation

$$
\frac{\delta U}{\delta A_{y}}=0 \quad \text { or } \quad \frac{\delta U}{\delta C_{y}}=0 \quad \text { or } \quad \frac{\delta \mathrm{U}}{\delta M_{A}}=0
$$

5. Use the solved reaction to find other reactions.
6. Find the change in angle at C by using Castigliano's:
$\theta=\left[\frac{\delta \mathrm{U}}{\delta M_{C}}\right]_{M_{C}=0}$

Most common errors:

- Small math errors (just lose a few points)
- Taking the partial derivative without isolating for the redundant load.

$$
\frac{\delta}{\delta A_{y}}\left(A_{y} x+M_{A}\right) \neq x
$$

$$
\frac{\delta}{\delta A_{y}}\left(A_{y} x+M_{A}\right)=x+\frac{\delta M_{A}}{\delta A_{y}}=x-L
$$

- Limits of integration on the integral of U.

Exam 2: Q3

(a) Example 1: Cy redundant, solve from the right (easiest method)

$\left(\sum M\right)^{1}=-M_{1}+M_{C}+C_{y} x=0 \quad 1 \begin{array}{ll}\text { a }\end{array}$
$\left(\sum M\right)_{2}=-M_{2}+M_{C}+C_{y} x-P\left(x-\frac{L}{2}\right)=0$
$M_{2}=M_{C}+C_{y} x-P\left(x-\frac{L}{2}\right)$
$\begin{array}{ll} 1 & \frac{\delta M_{1}}{\delta c_{y}}=x \tag{2} \end{array}$
(2) $\left[\frac{\delta \mathrm{U}}{\delta c_{y}}\right]_{M_{C}=0}=0=\left(\frac{1}{\mathrm{EI}}\right) \int_{0}^{L / 2} M_{1} \frac{\delta M_{1}}{\delta c_{y}} d x+\left(\frac{1}{\mathrm{EI}}\right) \int_{L / 2}^{L} M_{2} \frac{\delta M_{2}}{\delta c_{y}} d x$
$0=\left(\frac{1}{\mathrm{EI}}\right) \int_{0}^{L / 2} C_{y} x^{2} d x+\left(\frac{1}{\mathrm{EI}}\right) \int_{L / 2}^{L} C_{y} x^{2}-P x^{2}+P\left(\frac{L}{2}\right) x d x$

Rearrange to make the integrals easier

$$
0=\left(\frac{1}{\mathrm{EI}}\right) \int_{0}^{L} C_{y} x^{2} d x+\left(\frac{1}{\mathrm{EI}}\right) \int_{L / 2}^{L}-P x^{2}+P\left(\frac{L}{2}\right) x d x
$$

Integrate and multiply by EI

$$
\begin{aligned}
& 0=\left[\left(\frac{1}{3}\right) C_{y} x^{3}\right]_{0}^{L}+\left[-\left(\frac{1}{3}\right) P x^{3}+P\left(\frac{L}{4}\right) x^{2}\right]_{L / 2}^{L} \\
& 0=\left(\frac{1}{3}\right) C_{y} L^{3}-P\left(\frac{1}{3}\right)\left(\frac{7}{8}\right) L^{3}+P\left(\frac{1}{4}\right)\left(\frac{3}{4}\right) L^{3}
\end{aligned}
$$

$$
\begin{aligned}
&\left(\frac{1}{3}\right) C_{y} L^{3}=P\left(\frac{14}{48}\right) L^{3}-P\left(\frac{9}{48}\right) L^{3} \longrightarrow \begin{array}{l}
C_{y}=\frac{5}{16} P
\end{array} \\
&(2) \longrightarrow(1) \\
& A_{y}=\frac{11}{16} P
\end{aligned}
$$

(b)

$(2) \longrightarrow \begin{aligned} & A_{y}=\frac{11}{16} P \\ & (1) \longrightarrow \\ & M_{A}=\frac{3}{16} P L\end{aligned}(1)$

$$
(1) \longrightarrow M_{A}=\frac{3}{16} P L \quad(1)
$$

(2) $\left[\frac{\delta \mathrm{U}}{\delta M_{C}}\right]_{M_{C}=0}=\theta_{1}=\left(\frac{1}{\mathrm{EI}}\right) \int_{0}^{L / 2} M_{1} \frac{\delta M_{1}}{\delta M_{C}} d x+\left(\frac{1}{\mathrm{EI}}\right) \int_{L / 2}^{L} M_{2} \frac{\delta M_{2}}{\delta M_{C}} d x$

 $\theta=\left(\frac{1}{\mathrm{EI}}\right) \int_{0}^{L / 2} C_{y} x d x+\left(\frac{1}{\mathrm{EI}}\right) \int_{L / 2}^{L} C_{y} x-P x+P\left(\frac{2}{2}\right) d x \quad$ (2)
$\theta=\left(\frac{1}{E I}\right)\left[\left(\frac{1}{2}\right) C_{y} x^{2}\right]_{0}^{L}+\left(\frac{1}{E I}\right)\left[-\left(\frac{1}{2}\right) P x^{2}+P\left(\frac{L}{2}\right) x\right]_{L / 2}^{L}$
$\theta=\left(\frac{1}{\mathrm{EI}}\right)\left[\left(\frac{1}{2}\right) C_{y} L^{2}-P\left(\frac{1}{2}\right)\left(\frac{3}{4}\right) L^{2}+P\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) L^{2}\right]$
$\theta=\left(\frac{1}{\mathrm{EI}}\right)\left[\left(\frac{5}{32}\right) P L^{2}-\left(\frac{12}{32}\right) P L^{2}+\left(\frac{8}{32}\right) P L^{2}\right]{ }_{\wedge}^{\prime}\left(\frac{1}{E I}\right)\left(\frac{1}{32}\right) P L^{2}$

(a) Example 2: Ay redundant, solve from the left (reasonable method)

(2) $\rightarrow M_{A}=M_{C}+P\left(\frac{L}{2}\right)-A_{y} L \rightarrow M_{1}=M_{C}+P\left(\frac{L}{2}\right)+A_{y}(x-L)$

$$
\left(\sum M\right)_{2}=M_{2}-M_{A}-A_{y} x+P\left(x-\frac{L}{2}\right)=0
$$

$(2) M_{2}=M_{A}+A_{y} x-P\left(x-\frac{L}{2}\right) \quad M_{2}=M_{C}+A_{y}(x-L)-P(x-L)$

$$
\begin{aligned}
& \text { (2) }\left[\frac{\delta \mathrm{U}}{\delta A_{y}}\right]_{M_{C}=0}=0 \stackrel{1}{=}\left(\frac{1}{\mathrm{EI}}\right) \int_{0}^{L / 2} M_{1} \frac{\delta M_{1}}{\delta A_{y}} d x+\left(\frac{1}{\mathrm{EI}}\right) \int_{L / 2}^{L} M_{2} \frac{\delta M_{2}}{\delta A_{y}} d x \\
& 0=\left(\frac{1}{\mathrm{EI}}\right) \int_{0}^{L / 2}\left[A_{y}(x-L)+P\left(\frac{L}{2}\right)\right](x-L) d x \\
& \quad+\left(\frac{1}{\mathrm{EI}}\right) \int_{L / 2}^{L}\left[A_{y}(x-L)-P(x-L)\right](x-L) d x
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\frac{1}{\mathrm{EI}}\right) \int_{0}^{L / 2}\left[A_{y}\left(x^{2}-2 x L+L^{2}\right)+P\left(\frac{L}{2}\right) x-P\left(\frac{L^{2}}{2}\right)\right] d x \\
& +\left(\frac{1}{\mathrm{EI}}\right) \int_{L / 2}^{L}\left[\left(x^{2}-2 x L+L^{2}\right)\left(A_{y}-P\right)\right] d x \\
& 0=\left[A_{y}\left(\frac{1}{3} x^{3}-L x^{2}+L^{2} x\right)+P\left(\frac{L}{2}\right)\left(\frac{x^{2}}{2}\right)-P\left(\frac{L^{2}}{2}\right) x\right]_{0}^{L / 2} \\
& +\left[\left(\frac{1}{3} x^{3}-L x^{2}+L^{2} x\right)\left(A_{y}-P\right)\right]_{L / 2}^{L} \\
& 0=A_{y}\left(\frac{7}{24}\right)+P\left(\frac{1}{16}\right)-P\left(\frac{1}{4}\right)+A_{y}\left(\frac{1}{24}\right)-P\left(\frac{1}{24}\right) \\
& \begin{aligned}
&\left(\frac{1}{3}\right) A_{y}=P\left(\frac{14}{48}\right)-P\left(\frac{3}{48}\right) \\
&(2) \longrightarrow \begin{array}{ll}
A_{y}=\frac{11}{16} P
\end{array} \\
& \hdashline C_{y}=\frac{5}{16} P
\end{aligned} \\
& (1) \longrightarrow(1) \\
& \text { (2) }\left[\frac{\delta \mathrm{U}}{\delta M_{C}}\right]_{M_{C}=0}=\theta_{\mathrm{I}}=\left(\frac{1}{\mathrm{EI}}\right) \int_{0}^{L / 2} M_{1} \frac{\delta M_{1}}{\delta M_{C}} d x+\left(\frac{1}{\mathrm{EI}}\right) \int_{L / 2}^{L} M_{2} \frac{\delta M_{2}}{\delta M_{C}} d x
\end{aligned}
$$

$$
\begin{aligned}
& \theta=\left(\frac{1}{\mathrm{EI}}\right)\left[-\left(\frac{1}{2}\right) A_{y} L^{2}+P\left(\frac{L}{2}\right)^{2}-P\left(\frac{1}{2}\right)\left(\frac{3}{4}\right) L^{2}+P\left(\frac{1}{2}\right) L^{2}\right.
\end{aligned}
$$

4.1

$$
\begin{aligned}
& M=100 \mathrm{kNm} \\
& \sigma=\frac{-M_{y}}{I_{22}} y_{a}=160 \mathrm{~mm} ; y_{b}=170 \mathrm{~mm} \\
&=\frac{1}{12} b h^{3}-2\left(\frac{1}{12} b^{\prime} h^{13}\right) \\
& \therefore I_{22(a)}=\frac{1}{12}(200)(320)^{3}-2\left(\frac{1}{12} \times 90 \times 300^{3}\right) \\
&=141.13 \times 10^{6} \mathrm{~mm}^{4} \\
&=\frac{1}{12}(200)(340)^{3}-2\left(\frac{1}{12} \times 95 \times 300^{3}\right) \\
& I_{22,(b)} 227.57 \times 10^{6} \mathrm{~mm}^{4} \\
& y_{2 a}=1.134 \times 10^{-6} \mathrm{~mm}^{-3}>\frac{y_{b}}{I_{22,}(b)}=0.747 \times 10^{-6} \mathrm{~mm}^{-3} \\
& I_{22_{1}(a)} \\
& \therefore \quad\left|\sigma_{a}\right|>\left|\sigma_{b}\right|
\end{aligned}
$$

4.2

a)

$$
\begin{aligned}
U_{A} & =\frac{1}{2} F_{1}^{2}\left(\frac{L}{A E}\right)_{1}+\frac{1}{2} F_{2}^{2}\left(\frac{L}{A E}\right)_{2} \\
& =\frac{1}{2}\left(\frac{L}{A E}\right) 5 P^{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
U_{B} & =\frac{1}{2}(2 P)^{2}\left(\frac{L}{2 A E}\right)+\frac{1}{2}(P)^{2}\left(\frac{L}{A E}\right) \\
& =\frac{1}{2}\left(\frac{L}{A E}\right) 3 P^{2}
\end{aligned}
$$

c)

$$
\begin{aligned}
V_{c} & =\frac{1}{2}(2 P)^{2}\left(\frac{L}{A E}\right)+\frac{1}{2} P^{2}\left(\frac{L}{2 A E}\right) \\
& =\frac{1}{2}\left(\frac{L}{A E}\right)\left(4.5 P^{2}\right)
\end{aligned}
$$

d) $V_{d}=\frac{1}{2}(2 P)^{2}\left(\frac{L}{2 A E}\right)+\frac{1}{2} P^{2}\left(\frac{L}{2 A E}\right)$

$$
=\frac{1}{2}\left(\frac{L}{2 A E}\right)\left(2.5 P^{2}\right)
$$

$$
\therefore V_{b}<V_{a} ; V_{c}<V_{a} ; V_{d}<V_{a}
$$

4.3
a) $p(x)=E I u^{\prime \prime \prime \prime}(x)=p_{0} \cos \left(\frac{\pi x}{2 L}\right)$
b) $\theta_{A}=0$ (fixed end)

$$
\begin{aligned}
& \theta(x)=u^{\prime}(x) \Rightarrow \theta_{B}=\theta(L)=u^{\prime}(L) \\
& \therefore \theta_{B}=\frac{P_{0} L^{3}}{\pi^{3} E I}\left(\pi^{2}-8\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
& V(x)=E I u^{\prime \prime \prime}(x) \\
& R_{A}=V(0) \\
& \therefore R_{A}=\frac{-2 L P_{0}}{\pi} \\
& M(x)=E I u^{\prime \prime}(x) \\
& M_{A}=M(0) \\
& \Rightarrow M_{A}=\frac{2 P_{0} L^{2}}{\pi^{2}}(\pi-2)
\end{aligned}
$$

