Solution to Problem 1.
Review. The free body diagram, shear force diagram, bending moment diagram, and torque
diagram of the shaft are shown in Figures 1, 2, 3, and 4, respectively.

F,=225N F,=275N

: e |

_ A \ E B _ TC
0 A//////////////////////////////////,0W > 7
A -10.715N B C
vooy TR Figure 2. The shear force diagram of the shaft.
M (N.m) ' ' -15 N.m -15.857 N.m

Figure 3. The bending moment diagram of the shaft.
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Figure 4. The torque diagram of the shatft.
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From the sum of the moments about the bearing O and the sum of the forces in the Y-direction,
the reaction forces at bearings C and O are

_225x60+275x220

R
¢ 280

=264.285N and R, =500-264.285=235.715N (1)



(i) The shaft diameter at the groove can be written from the Goodman criterion, see Eq. (7.8), page

382, as
16n, A B
g0 AL B )
( o ( s s )j )
The coefficients in Eq. (2) are given by Eq. (7.6), see page 381, namely
2 2
Az\/4(KfMa) +3(K T, (3a)
and
B= (K Mo ) +3(K, T, ) b

The rotating shaft is subjected to fully reversed bending, therefore, the mean component of the
bending moment at the mid-point of the shaft, point E, is

M, =0 )

The alternating component of the bending moment acting at the mid-point of the shaft, point E,
can be written as
M, =-OExR,+AEx F, (5a)

Substituting Eq. (1) into Eq. (5a), the alternating component of the bending moment is

M, = |-140x235.715+80x225 | =|~15000 N.mm | =15 N.m (5b)

The mean and alternating components of the constant torque, see Figure 4, are
T, =150 N.m and T,=0 (6)
The fatigue stress concentration factors for the normal stress and the shear stress are

K,=2.25 and K. =195 (7)

A s
Substituting Egs. (4), (5), (6), and (7) into Egs. (3), the coefficients are

A=/4(2.25x15) +3(1.95x0)’ =67.5 N.m (8a)

and

B= \/4(2.25)( 0)"+3(1.95x150)" =506.625 N.m (8b)

Substituting n, =3, S, =125 MPa, S =335 MPa, and Egs. (8) into Eq. (2), the diameter of the

shaft at the groove can be written as

(9a)

16x3 . 675  506.625 )
d= -+ <)
7 125x10°  335x10



that is, the diameter of the shaft at the groove can be written as

1/3 1/3
d=(16"3 (0.54+1.512)J =(—16X3X2'052j m (9b)

zx10° x10°

Therefore, the diameter of the shaft at the groove, see Figure 1, is

d =31.53 mm (10)

Check: The diameter of the shaft at the groove can also be written from Eq. (2) as

16n, [ 1 : 271 : 72
o= ol st e n) T st e nf Tl

T ut

Substituting the infinite life fatigue factor of safety, the endurance limit, the ultimate tensile
strength, and Egs. (4), (5), and (6) into Eq. (11) the diameter of the shaft at the groove is

d=31.53mm (12)

Note that this answer is in complete agreement with Eq. (10).
(ii) The von Mises mean stress for critical element at E can be written from Eq. (7.4) see page 381,
as

o, =[a,2+31,2]" (13a)
and the von Mises alternating stress can be written from Eq. (7.5) see page 381, as
, ) 512
o, =[0.+31.] (13b)

The mean component of the normal stress and the alternating component of the shear stress,
respectively, are

0, =0 and 7,=0 (14a)
The alternating component of the normal stress is
o, = 32 Kffw“ = 32(2'25)(15?00) =10.967 MPa (14b)
md 7(31.53)
The mean component of the shear stress is
_16 KT, _16(1.95)(150000) _ 47 525 MPa (14c)

T
" nd 7(31.53)°

Substituting Egs. (14a) and (14c) into Eq. (13a), the von Mises mean stress for the critical element
at E is

, 512
0, =[0+3x47.525 | " =82.316 MPa (15a)



Substituting Eqs. (14a) and (14b) into Eq. (13b), the von Mises alternating stress at E is
5 1/2
=[10.967°+0] " =10.967 MPa (15b)

The maximum von Mises stress at E can be written from Eq. (7.15), see page 382, as

I:O-max + 3 Tmax] [(Gm + Ga)z + 3(Tm + Ta )2 :|1/2 (163)
or as
32K, M, +M )Y (16K .(T,+T,)\
Ol = ARl N | i (16b)
wd wd
Substituting Egs. (4) and (5) into Eq. (16b), the maximum von Mises stress at E is
=[10.967> +3(47.525)* |~ =83.043 MPa (17)

(iii) The factor of safety guarding against first-cycle yielding for the critical element at E using the
Langer line, see Eq. (7.16), page 382, can be written as

S S
__ M — e
n,=—; or as n,=—; (18)
O-max O-max

Since the tensile yield strength is less than the compressive yield strength then the static factor of
safety for the critical element guarding against yielding is given by the first equation of Eq. (18).
Substituting the tensile yield strength S, =190 MPa and Eq. (17) into Eq. (18), the factor of

safety guarding against first-cycle yielding for the critical element at E is

190
n,= =228 19
’ 83.043 (19)

Using the conservative approach, see page 383. The factor of safety guarding against first-cycle
yielding for the critical element at E can be written as

S,
hT e o 20)

Substituting the tensile yield strength and Egs. (15) into Eq. (20), the factor of safety guarding
against first-cycle yielding for the critical element at E is

- 190 190
’ 7 82316+10.967 93.283

21)

Note that this answer given is, indeed, more conservative than the answer given by Eq. (19).



Solution to Problem 2.
(i) For the given position, the cam and the follower can be modeled as two cylinders. Therefore,
the half-width of the contact patch can be written from Eq. (3-73), see page 148, as

(1_V12) + (l_sz)

oo [2F) _E E, 0
zl I 1
—+

dl d2

The subscript 1 is used here to denote the cam and the subscript 2 is used to denote the follower.
Since the follower is flat-faced then the diameter of the follower is infinite, that is

d, =0 (2)

The elastic material properties of the carbon steel cam, see Table A-5, page 1023, are

E, =207 GPa and v, =0.292 (3a)

The elastic material properties of the titanium alloy follower, see Table A-5, page 1023, are

E, =114 GPa and v, =0.340 (3b)

Substituting and the given geometry, the force F' = 8000 N, and Egs. (2) and (3) into Eq. (1), the
half-width of the contact patch can be written as

_ 2 3 _ 2 )2
b 2x8000 |[ (1-0.2927)/(207x107)+(1-0.340")/(114x10") mm (4a)
x40 1/100+1/e0
Therefore, the half-width of the contact patch is
b=0.394 mm (4b)

(ii) The maximum pressure on the contact patch can be written from Eq. (3-74), see page 148, as
2\ F

| Z || = Sa

P (ﬂj{ b l] (3a)

Substituting the given geometry, the force F =8000 N, and Eq. (4b) into Eq. (5a), the maximum
pressure acting on the contact patch is

p =—2X8000__ 353157 Mmpa (5b)

7£%x0.394 x40



(iii) The x, y, and z components of the normal stress acting on the element of the contact patch on
the Z-axis can be written from Egs. (3-75), (3-76), and (3-77), see page 148, as

} (6a)

(6b)

O-y =_pmax

and

o, =— Lo (6¢)

(a) Substituting Z =0, b=0.394 mm, Poisson’s ratio for the cam, that is, and v =v, =0.292, and

Eq. (5b), into Egs. (6a), the x component of the normal stress on element O of the cam on is

0. =—2x0.292x323.157(1-0) = —188.724 MPa (7)

Substituting Z =0, b=0.394 mm, and Eq. (5b), into Egs. (6b) and (6¢), the y and z components
of the normal stress acting on element O of the cam are

1+2(0)’
0, =—323.157{| /=== |-2(0) { =—-323.157 MPa (8a)
1+(0)
and
o. =—L'15:=—323.157Mpa (8b)
1+(0)

The principal normal stresses acting on element O of the cam, written in ordered form, are
6> 0,> 0, ©)

Therefore, from Egs. (7) and (9), the maximum principal normal stress acting on element O of the
cam is
0, =0, =—188.724 MPa (10a)

and the minimum principal normal stresses acting on element O of the cam is



0,=0,=0,=0,=-323.157 MPa (10b)

Check. From Egs. (5b), (10a), and (10b), the ratios of the principal normal stresses and the
maximum pressure are

91 __ 0584 and 9 =% g (11)

pmax pmax pmax

The maximum shear stress acting on the element O of the cam on the Z-axis, see Eq. (3.72),
page 147, can be written as

T o= (12a)

Substituting Egs. (10a) and (10b) into Eq. (12a), the maximum shear stress acting on element O of
the cam on the Z-axis is
_ —188.724—(-323.157)

Tm ax 2

=67.217MPa (12b)

(b) Substituting Z =0, b=0.394 mm, v =v, =0.340, and Eq. (5b) into Eq. (6a), the x component

of the normal stress acting on element O of the follower is

0. =—2x0.340x323.157(1-0) =—219.747 MPa (13a)

Substituting Z =0, »=0.394 mm, and Eq. (5b) into Egs. (6b) and (6¢), the y and z components
of the normal stress acting on element O of the follower are the same as Eqs. (8a) and (8b), that is

o, =-323.157 MPa and o, =-323.157MPa (13b)

Therefore, the maximum principal normal stresses acting on element O of the follower is
0,=0, =-219.747MPa (14a)
and the minimum principal normal stresses acting on element O of the follower on the Z-axis are
0,=0,=0,=0,=-323.157 MPa (14b)

Check: Substituting Eqgs. (14a) and (14b) into Eq. (12a), the maximum shear stress acting on
element O of the follower is

_-219747-(-323.157)
max 7

=51.705MPa (15)

Equations (12b) and (15) show that the maximum shear stress at the surface of the cam (at point
O) is greater than the maximum shear stress at the surface of the follower (at point O). The reason
is that Poisson’s ratio for the cam material is less than Poisson’s ratio for the follower material.



(iv) Since the depth OB =0.25mm does not correspond to the location of the maximum shear
stress, that is, Z=0.786b=0.310mm, see page 148, then Figure 3-40, see page 149, cannot be
used in the solution to this part of the problem.

Substituting Z=0B=0.25mm, »=0.394mm, and v=v,=0.292 into Eq. (7a), the X-

component of the normal stress on element B is

2
0. =-2x0.292x323.157 1+( o.zsj L0251 103761 MPa (16a)
' 0.394 ) |0.394|

Substituting Z=0.25mm into Eq. (7b), the Y-component of the normal stress on element B is

( 0.25 )2
+2| =
0.394) | ,|0.25]

\/ 025 V| 10.394]
j I i
I (0.394j

o, =-323.157 =— 82.482 MPa (16b)

Substituting Z=0.25mm into Eq. (7c), the Z-component of the normal stress on element B is

o =—— 3817 595 863MPa (16¢)

0.25 Y
+ -

0.394
Again, the principal normal stresses on element B are written in ordered form, see Eq. (9), that is,
0, 2 0, 2 0,. Therefore, the minimum principal normal stress on element B is

0,=0, =-272.863MPa (17a)
the maximum principal normal stress on element B is
0,=0, =—82.482MPa (17b)
and the third principal normal stress acting on element B on the Z-axis is
0, =0,=-103.760 MPa (17¢)
Substituting Egs. (17a) and (17b) into Eq. (12a), the maximum shear stress acting on element B is

- 82.482-(-272863)

= : =95.191MPa (18)

Comparing Eq. (18) with Eq. (12b), the observation is that the maximum shear stress acting on
element B of the cam is greater than the maximum shear stress acting on element O of the cam.
This agrees with the Hertzian theory of contact stress.
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Solution to Problem 3.
(i) The Sommerfeld number from Eq. (12-10), see page 632, can be written as

_(r) uN
S_U P @

The absolute viscosity of the SAE 50 lubricant at an operating temperature of 100°F, see Figure
12-2, page 628, is
U =40 preyn (2)

The nominal bearing pressure (that is, the load acting on the projected area of the bearing), see Eq.
(12.7), page 630, can be written as
/4

=2rl

(3a)

Substituting the load W =4001bs , the radius of the journal » =2in, and the length of the bearing
[ =5in into Eq. (3a), the nominal bearing pressure is

400 1b

= =20psi 3b
2x2inx5in ¥ (35)

The speed of the journal specified in the problem statement is 1200 rpm, that is

N:@:Nrev/s 4)
60

Substituting » = 2in, the radial clearance ¢ =0.02 in, and Egs. (2), (3), and (4), into Eq. (1),
the Sommerfeld number can be written as

g {Oéiznin T {(40x 107 rz}(f)r;); (20rev/s) (58)
Therefore, the Sommerfeld number is
§=0.400 (5b)
(i) The friction torque acting on the journal can be written from Eq. (12.6), see page 629, as
T:47Z2r3l,uN 62)
c

Substituting the given geometry and Egs. (2) and (4) into Eq. (6a), the friction torque acting on the
journal is

_ 477 x2°x5x40x107°x 20
0.02

T = 63.165 Ibs.in (6b)

Check: The friction torque acting on the journal can be written from Eq. (12.8), see page 630, as



T=2rfIP=fWr (7)
The coefficient of friction variable specified in the problem statement (based on Figure 12.17, see
page 642) is
f L (8a)
c

Substituting »=2in and ¢ =0.02 in into Eq. (8a), and rearranging, the coefficient of friction is

f=7.7><0'—§2:0.077 (8b)

Check: Substituting » =2in, W =4001bs, and Eq. (8b) into Eq. (7), the friction torque acting on

the journal is
T'=0.077x400%2 = 61.60 lbs.ins (9a)

This answer is in good agreement with Eq. (6b). Also, the coefficient of friction can be written
from Eq. (12.9), see page 631, as

=270 (9b)
C

Substituting »=2in, ¢=0.02 in, and Egs. (2), (3b), and (4) into Eq. (9b), the coefficient of
friction is

-6
40x10 XZO)( 2 )=0.079 (9¢)

=27
J ( 20 0.02

Note this answer is in good agreement with Eq. (8b). However, this answer is based on Petroff’s
equation and does not agree with the given problem statement.
(iii) The thermal energy loss at steady state (that is, the heat rate) can be written from page 648 as

2xNT
HLoss = .] (1 Oa)
where for common petroleum lubricants, the Joulean heat equivalent, see page 648, is
J =778 ft.Ib/Btu =9336 in.1b/ Btu (10b)

Substituting Egs. (4), (6b), and (10b) into Eq. (10a), the thermal energy loss at steady state is

_ 27%20%63.165
Loss 9336

=0.850 Btu (11a)

Substituting Egs. (4), (9a), and (10b) into Eq. (10a), the thermal energy loss at steady state is

_ 27mx20x61.60
Loss 9336

=0.829 Btu (11b)

Check: The thermal energy loss at steady state can also be written from Eq. (b) on page 648 as

10



HLOSS=(47IPrlch(frJ (12a)
J c

Substituting Egs. (3b), (4), (9¢), and (10b) into Eq. (12a), the thermal energy loss at steady state
is

_47mx20x2x5x20x0.02 (0.0079><2) —0.851 Btu (12b)

H =
Loss 9336 0.02

Substituting Egs. (3b), (4), and (10b) and the flow variable specified in the problem statement into
Eq. (12a), the thermal energy loss at steady state is

o - 47rx20x2x5%20x0.02
Loss 9336

(7.7) =0.8295 Btu (12¢)

Note that Eq. (12b) is in good agreement with Eq. (11a) and Eq. (12c) is in good agreement with
Eq. (11b).

(iv) The thermal energy loss at steady state can also be written in terms of the temperature rise and
the flow parameters from Eq. (a), see page 647, as

H,. =pCpQAT(1—O.5%) (13a)
Rearranging Eq. (13a), the flow ratio can be written as
Q_ 2 1——H"’” (13b)
0 pC,QAT

where the density and the specific heat capacity of common petroleum lubricants are specified on
page 648, are

£ =0.03111bm/in’ and C,=0.42Btu/lbm °F (14)

The flow variable, see Figure 12.18, page 643, is specified in the problem statement as

0 =3.6 (15a)
rcN|

Substituting » =2in, ¢=0.02 in, /=5 in, and Eq. (4) into Eq. (15a), and rearranging, the flow
rate (that is, the volumetric oil flow) is

0=3.6(2x0.02x20x5) =14.4in/s (15b)

Substituting the specified temperature rise A7 =5°F and Egs. (11), (12b), and (15b) into Eq.
(13b), the flow ratio can be written as

0 0.829 Btu
= =21~ (16a)
0 (0.03111bm/in*)(0.42 Btu /Ibm°F)(14.4 in® /s ) (5°F)

11



Therefore, the flow ratio is

0
s =0.24 16b
0 (160)

Check: The flow ratio can also be obtained from Eq. (12-19), see page 648, that is

9.70AT, _ f(r/c) (17a)

P (1-0.50,/0)(Q/reNl)

Rearranging this equation, the flow ratio can be written as

%:2[1 f(rie)P j (17b)

0 970 AT, (Q/rcNI)
Substituting the temperature rise AT =5°F, and Egs. (1b), (7a), and (14), into Eq. (17b), the flow
ratio can be written as
0 9.70(5)(3.6)

Therefore, the flow ratio is

0
L =0.24 18b
0 (%)

Note that Eq. (18b) is in complete agreement with Eq. (16b).

12



Solution to Problem 4.
(i) The transmitted load can be written from Eq. (13-35), see page 712, as

w, =33000 2L (1)

t
The pitch line velocity can be written from Eq. (13-34), see page 711, as

_7zdgn

V =2"9 6 ft/min 2a
f 17 (2a)

Substituting the pitch circle diameter of the gear d, =5 in and the speed of the gear n; = 500 rpm
into Eq. (2a), the pitch line velocity is

_ x5x500

.
! 12

= 654.5 ft/ min (2b)

Substituting the horsepower H =5hp and Eq. (2b) into Eq. (1), the transmitted load is

W= 33000x5

=252.11b 3
‘6545 ©)
The radial component of the load can be written from Figure 13-30, see page 713, as

W, =W, tan ¢ (4a)
Substituting Eq. (3) and pressure angle ¢ =20° into Eq. (4a), the radial component of the load is
W, =252.1xtan20" =91.76 Ib (4b)

(ii) The AGMA normal stress due to bending of the pinion teeth can be written in US customary
units from Eq. (14-15), see page 751, as

W, P

o= K K K K K 5
FJ(ovs m B) ()

To determine the bending strength geometry factor J for the pinion. The diametral pitch can be
written from Eq. (13-1), see page 684, as

P:g (6)

1

Substituting the diametral pitch P=8inches™ and the pitch circle diameter of the gear d, =5in

into Eq. (6), and rearranging, the number of teeth on the gear is
N.=Pd_ =8x5=40 (7a)

Therefore, the number of teeth on the pinion is

13



N,=Pd,=8x3=24 (7b)

Since N, =24 and the loads are applied at the tip of the teeth then the bending strength geometry
factor for the pinion teeth from Figure 14-6, see page 759, is

J=0.25 (8)

To determine the overload factor. For light shock input and moderate shock output the overload
factor from the table on page 772, see Figure 14-17, is

K, =15 (9a)
The dynamic factor for the pinion is given in the problem statement as

K, =125 (9b)
The size factor for the pinion, see Eq. (a), page 765, is given in the problem statement as

K =10 (9¢)

The load distribution factor for the pinion, see Eq. (14-30), page 765, is given in the problem
statement as
K, =10 (9d)

Since the pinion is solid then the rim thickness factor for the pinion, see Section 14-16, page 770,
is
K,=1.0 (%e)

Substituting the face width F =1.25inches, the diametral pitch P=8inches™, and Egs. (3), (8),
and (9) into Eq. (5), the AGMA normal stress due to bending of the pinion teeth can be written as

G—MX(I.S %x1.25%1.0x1.0 x1.0) kpsi (10a)

T 1.25%0.25
Therefore, the AGMA normal stress due to bending of the pinion teeth is
o =12.1kpsi (10b)

(iii) The AGMA bending factor of safety for the pinion can be written from Eq. (14-41), see page
771, as

S, =L (11)

YN
Sﬂ){K I jSt (12)



For commercial quality carburized and hardened Grade 1 steel gears, the repeatedly applied
bending strength stress-cycle factor, for number of load cycles greater than 10’, from Figure 14-

14, see page 769, can be written as
Y, =1.3558 N7 (13a)

Substituting the number of load cycles N =10° cycles into Eq. (13a), the repeatedly applied
bending strength stress-cycle factor is

Y, =1.3558(10°) """ =0.937 (13b)

Note that the larger the value of Y, then the larger the bending factor of safety for the pinion. This

is consistent with using commercial quality gears. If precision gears are used then a lower factor
of safety would be acceptable.
The gearset is operating at room temperature, therefore, the temperature factor from page 770,
is
Kr=1 (14)
The reliability factor, for R =0.995, can be written from the least-squares regression fit, see

Eq. (14-38), page 769, as
K,=0.50-0.109In(1-R) (15a)

Substituting the specified reliability R =0.995 into Eq. (15a), the reliability factor is
K,=0.50-0.109In(1-0.995)=1.077 (15b)

Substituting the repeatedly applied bending strength S, =55 kpsi and Egs. (13b), (14), and (15b)
into Eq. (12), the fully corrected bending strength is

0.937
S, =| ——— |x55=47.85kpsi 16
o (1.0><1.077j P (16)

Substituting Egs. (10b) and (16) into Eq. (12), the AGMA bending factor of safety for the pinion
is
_47.85

S
121

=3.95 (17)
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