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Solution to Problem 1.   
Review. The free body diagram, shear force diagram, bending moment diagram, and torque 
diagram of the shaft are shown in Figures 1, 2, 3, and 4, respectively.  
 
 

 
 

 

 

Figure 1. The free body diagram of the shaft. 

 

 

 
 

 

Figure 2. The shear force diagram of the shaft. 

 

 

 

 

 

Figure 3. The bending moment diagram of the shaft. 
 

 

 

 

Figure 4. The torque diagram of the shaft. 
 

From the sum of the moments about the bearing O and the sum of the forces in the Y-direction, 
the reaction forces at bearings C and O are 
 

C
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280
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(i) The shaft diameter at the groove can be written from the Goodman criterion, see Eq. (7.8), page 
382, as 

1/3

f16 n A B( )
e ut

d
S Sπ

 
= + 
 

           (2) 

 
The coefficients in Eq. (2) are given by Eq. (7.6), see page 381, namely 
 

( ) ( )2 2

a aA 4 M 3 T
sf fK K= +          (3a) 

and 

( ) ( )2 2

m mB 4 M 3 Tf fsK K= +          (3b) 
 
The rotating shaft is subjected to fully reversed bending, therefore, the mean component of the 
bending moment at the mid-point of the shaft, point E, is 
 

mM 0=              (4) 
 
The alternating component of the bending moment acting at the mid-point of the shaft, point E, 
can be written as 

O AaM OE x R AE x F= − +          (5a) 
 
Substituting Eq. (1) into Eq. (5a), the alternating component of the bending moment is 
 

aM 140 x 235.715 80 x 225 15000 N.mm 15 N.m= − + = − =       (5b) 

 
The mean and alternating components of the constant torque, see Figure 4, are 
 

mT 150 N.m=               and                      aT = 0           (6) 
 
The fatigue stress concentration factors for the normal stress and the shear stress are  
 

K = 2.25f                          and                          K = 1.95sf          (7) 

 
Substituting Eqs. (4), (5), (6), and (7) into Eqs. (3), the coefficients are 
 

( ) ( )2 2A 4 2.25x15 3 1. 67.5 N.m95x 0= + =         (8a) 
and 

( ) ( )2 2B 4 2.25x 0 3 1.95x 506.6 N15 m0 25 .= =+         (8b) 
 

Substituting 3fn = , eS = 125 MPa,  utS = 335 MPa,  and Eqs. (8) into Eq. (2), the diameter of the 
shaft at the groove can be written as  
 

1/3

6 6
16 x 3 506.625( )

125 x10 335 x1
7.5

0
6 md

π
 

= + 
 

        (9a) 



3 
 

that is, the diameter of the shaft at the groove can be written as  
 

1/3 1/3

6 6
16 x 3 16 x 3x 2.052(0.54 1.512)

x10 x10
md

π π
   

= + =   
   

        (9b) 

 
Therefore, the diameter of the shaft at the groove, see Figure 1, is 
 

31.53 mmd =            (10) 
 
Check: The diameter of the shaft at the groove can also be written from Eq. (2) as 
 

( ) ( ) ( ) ( )
1/3

1/2 1/22 2 2 216 1 14 3 4 3f
f a fs a f m fs m

e ut

n
d K M K T K M K T

S Sπ
     = + + +            

       (11) 

 
Substituting the infinite life fatigue factor of safety, the endurance limit, the ultimate tensile 
strength, and Eqs. (4), (5), and (6) into Eq. (11) the diameter of the shaft at the groove is  
 

31.53 mmd =           (12) 
 
Note that this answer is in complete agreement with Eq. (10).     
(ii) The von Mises mean stress for critical element at E can be written from Eq. (7.4) see page 381, 
as 

1/222
m 3m mσ ′  = + τσ         (13a) 

 
and the von Mises alternating stress can be written from Eq. (7.5) see page 381, as 
 

1/222 3aa aσ ′  = + τσ         (13b) 
 
The mean component of the normal stress and the alternating component of the shear stress, 
respectively, are     

0mσ =                 and                 0aτ =       (14a) 
 
The alternating component of the normal stress is   
 

f
3 3

32 K 32(2.25)(15000) 10.967 MPa
(31.53)

a
a

M
d

σ
π π

= = =      (14b) 

 
The mean component of the shear stress is  
 

fs
3 3

16 16(1.95)(150000) 47.525 MPa
(31.53)

m
m

K T
d

τ
π π

= = =      (14c) 

 
Substituting Eqs. (14a) and (14c) into Eq. (13a), the von Mises mean stress for the critical element 
at E is 

1/22
m 0 3x 47.525 82.316 MPaσ ′  = + =        (15a) 
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Substituting Eqs. (14a) and (14b) into Eq. (13b), the von Mises alternating stress at E is 
 

1/2210.967 0 10.967 MPaaσ ′  = + =        (15b) 
 

The maximum von Mises stress at E can be written from Eq. (7.15), see page 382, as 
 

1/2 1/22 2 2 2
max max max a m am3 ) 3( )σ σ′    = + τ = + + τ + τ(σ σ         (16a) 

or as 
1/22 2

max 3 3

32 (M M ) 16 (T )
3

m a m af fsK K T

d d
σ

π π

 + +   
 ′ = +           

      (16b) 

 
Substituting Eqs. (4) and (5) into Eq. (16b), the maximum von Mises stress at E is  
 

1/22 2
max 10.967 3(47.525) 83.043 MPaσ ′  = + =          (17) 

 
(iii) The factor of safety guarding against first-cycle yielding for the critical element at E using the 
Langer line, see Eq. (7.16), page 382, can be written as 
 

max

yt
y

S
n

σ
=

′
                 or as                   

max

yc
y

S
n

σ
=

′
        (18) 

 
Since the tensile yield strength is less than the compressive yield strength then the static factor of 
safety for the critical element guarding against yielding is given by the first equation of Eq. (18).  

Substituting the tensile yield strength 190 MPaytS =  and Eq. (17) into Eq. (18), the factor of 
safety guarding against first-cycle yielding for the critical element at E is  
 

190 2.28
83.043yn = =           (19) 

 
Using the conservative approach, see page 383. The factor of safety guarding against first-cycle 
yielding for the critical element at E can be written as 
 

m

yt
y

a

S
n

σ σ
=

′ ′+
          (20) 

 
Substituting the tensile yield strength and Eqs. (15) into Eq. (20), the factor of safety guarding 
against first-cycle yielding for the critical element at E is  
 

190 190 2.03
82.316 10.967 93.283yn = = =

+
        (21) 

 
Note that this answer given is, indeed, more conservative than the answer given by Eq. (19). 
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Solution to Problem 2. 
(i) For the given position, the cam and the follower can be modeled as two cylinders. Therefore, 
the half-width of the contact patch can be written from Eq. (3-73), see page 148, as 
 

2 2
1

1

1

2

2

2

(1 )

1

(1 )

1
2 Eb

d

E
l
F

d
π

 − ν − ν+   =    
 + 
 

  (1) 

 

The subscript 1 is used here to denote the cam and the subscript 2 is used to denote the follower. 
Since the follower is flat-faced then the diameter of the follower is infinite, that is 
 

2d = ∞             (2) 
 

The elastic material properties of the carbon steel cam, see Table A-5, page 1023, are 
 

1 207  GPa E =                   and                    1 0.292ν =    (3a) 

 

The elastic material properties of the titanium alloy follower, see Table A-5, page 1023, are 
 

2 114  GPa E =                   and                        2 0.340ν =    (3b) 

Substituting and the given geometry, the force F = 8000 N, and Eqs. (2) and (3) into Eq. (1), the 
half-width of the contact patch can be written as 
 

1/22 23 32 8000 (1 0.292 10 ) (1 0.340 1) / (207 ) / (114 0 ) mm
40 1/100 1/

b
π

   × − × + − ×=    × + ∞   
      (4a) 

 

Therefore, the half-width of the contact patch is 
 

0.394 mmb =           (4b) 
 

(ii) The maximum pressure on the contact patch can be written from Eq. (3-74), see page 148, as 

max
2 Fp

blπ
  =   

  
                                                                                      (5a) 

 

Substituting the given geometry, the force 8000 N,F =  and Eq. (4b) into Eq. (5a), the maximum 
pressure acting on the contact patch is 
 

max
2 8000 323.157 MPa
0.394 40

p
π

×= =
× ×

                                  (5b) 
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(iii) The x, y, and z components of the normal stress acting on the element of the contact patch on 
the Z-axis can be written from Eqs. (3-75), (3-76), and (3-77), see page 148, as 
 

2

max2 1x
z zp
b b

σ ν
   = − + −  

   
        (6a) 

 

2

max 2

1 2
2

1
y

z
zbp
bz

b

σ

     +     = − −  
   +       

       (6b) 

and 

               max
2

1
Z

z

p

b

σ = −
 +  
 

      (6c) 

 

(a) Substituting 0 ,Z =  0.394 mm,b =  Poisson’s ratio for the cam, that is, and 1 0.292,ν ν= =  and 
Eq. (5b), into Eqs. (6a), the x component of the normal stress on element O of the cam on is 
 

2 0.292 323.157(1 0) 188.724MPaxσ = − × × − = −          (7) 
 
Substituting 0 ,Z =  0.394 mm,b =  and Eq. (5b), into Eqs. (6b) and (6c), the y and z components 
of the normal stress acting on element O of the cam are 

( )
( )

2

2

1 2 0
323.157 2(0) 323.157 MPa

1 0
yσ

  +  = − − = −   +  

                       (8a) 

and 

( )2

323.157 323.157 MPa
1 0

zσ = − = −
+

                                        (8b) 

 

The principal normal stresses acting on element O of the cam, written in ordered form, are 
 

1 2 3  σ σ σ≥ ≥             (9) 
 

Therefore, from Eqs. (7) and (9), the maximum principal normal stress acting on element O of the 
cam is 

1 188.724MPaxσ σ= = −        (10a) 
 

and the minimum principal normal stresses acting on element O of the cam is 
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2 3 323.157 MPazyσ σ σ σ= = = −=   (10b) 
 
Check. From Eqs. (5b), (10a), and (10b), the ratios of the principal normal stresses and the 
maximum pressure are 
 

max

1 0.584
p
σ = −                   and              32

max max

1
p p

σσ = = −        (11) 

 
The maximum shear stress acting on the element O of the cam on the Z-axis, see Eq. (3.72), 

page 147, can be written as 

1 3

2max
σ στ −=          (12a) 

Substituting Eqs. (10a) and (10b) into Eq. (12a), the maximum shear stress acting on element O of 
the cam on the Z-axis is 

188.724 ( 323.157) 67.217 MPa
2maxτ − − −= =       (12b) 

(b) Substituting 0 ,Z =  0.394 mm,b =  2 0.340,ν ν= =  and Eq. (5b) into Eq. (6a), the x component 
of the normal stress acting on element O of the follower is 
 

2 0.340 323.157 (1 0) 219.747 MPaxσ = − × × − = −      (13a) 
 
Substituting 0 ,Z =  0.394 mm,b =  and Eq. (5b) into Eqs. (6b) and (6c), the y and z components 
of the normal stress acting on element O of the follower are the same as Eqs. (8a) and (8b), that is 

323.157 MPayσ = −                   and                     323.157 MPazσ = −            (13b) 
 

Therefore, the maximum principal normal stresses acting on element O of the follower is 
 

1 219.747 MPaxσ σ= = −        (14a) 
 

and the minimum principal normal stresses acting on element O of the follower on the Z-axis are 
 

2 3 323.157 MPazyσ σ σ σ= = = −=   (14b) 
 
Check: Substituting Eqs. (14a) and (14b) into Eq. (12a), the maximum shear stress acting on 
element O of the follower is 
 

219.747 ( 323.157) 51.705MPa
2maxτ − − −= =         (15) 

Equations (12b) and (15) show that the maximum shear stress at the surface of the cam (at point 
O) is greater than the maximum shear stress at the surface of the follower (at point O). The reason 
is that Poisson’s ratio for the cam material is less than Poisson’s ratio for the follower material. 
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(iv) Since the depth OB 0.25mm=  does not correspond to the location of the maximum shear 
stress, that is, Z = 0.786 b = 0.310 mm,  see page 148, then Figure 3-40, see page 149, cannot be 
used in the solution to this part of the problem. 

Substituting Z OB 0.25mm= = , 0.394 mm,b =  and 1 0.292ν ν= =  into Eq. (7a), the X-
component of the normal stress on element B is 
 

20.25 0.252 0.292 323.157 1 103.761MPa
0.394 0.394xσ

   = − × × + − = −  
   

    (16a) 

Substituting Z 0.25mm= into Eq. (7b), the Y-component of the normal stress on element B is  

2

2

0.251 2
0.250.394323.157 2 82.482 MPa

0.3940.251
0.394

yσ

     +     = − − = −  
   +       

                (16b) 

Substituting Z 0.25mm=  into Eq. (7c), the Z-component of the normal stress on element B is  

2

323.157 272.863MPa
0.251

0.394

zσ − = −
 +  


=



                             (16c) 

 

Again, the principal normal stresses on element B are written in ordered form, see Eq. (9), that is, 
1 2 3.  σ σ σ≥ ≥  Therefore, the minimum principal normal stress on element B is 

 

3 272.863MPazσ σ = −=                                             (17a) 
 

the maximum principal normal stress on element B is  
 

1 82.482 MPayσ σ= = −         (17b) 

and the third principal normal stress acting on element B on the Z-axis is 
 

2 103.760MPaxσ σ = −=        (17c) 
 

Substituting Eqs. (17a) and (17b) into Eq. (12a), the maximum shear stress acting on element B is 
 

( )82.482 272.863
95.191MPa

2maxτ
− − −

= =        (18) 

Comparing Eq. (18) with Eq. (12b), the observation is that the maximum shear stress acting on 
element B of the cam is greater than the maximum shear stress acting on element O of the cam. 
This agrees with the Hertzian theory of contact stress.    
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Solution to Problem 3. 
(i) The Sommerfeld number from Eq. (12-10), see page 632, can be written as 
 

2r NS
c P

μ =  
 

            (1) 

 

The absolute viscosity of the SAE 50 lubricant at an operating temperature of 100°F, see Figure 
12-2, page 628, is  

40 μreynμ =              (2) 
 
The nominal bearing pressure (that is, the load acting on the projected area of the bearing), see Eq. 
(12.7), page 630, can be written as 

2
WP
r l

=           (3a) 

 
Substituting the load 400 lbsW = , the radius of the journal  2 in,r =  and the length of the bearing 

5 inl =  into Eq. (3a), the nominal bearing pressure is 
 

400 lb 20psi
2 2 in 5 in

P = =
× ×

         (3b) 

 
The speed of the journal specified in the problem statement is 1200 rpm, that is 
 

1200 20
60

rev / sN = =            (4) 
 

Substituting  2in,r =  the radial clearance 0.02 in,c =  and Eqs. (2), (3), and (4), into Eq. (1), 
the Sommerfeld number can be written as 
 

2 -62in reyn(40×10 × (20 re)
0.02 in 20ps

/s)
i

vS
  =      

        (5a) 

 
Therefore, the Sommerfeld number is 
 

0.400S =           (5b) 
 
(ii) The friction torque acting on the journal can be written from Eq. (12.6), see page 629, as 

2 34 r l NT
c

π μ=           (6a) 
 
Substituting the given geometry and Eqs. (2) and (4) into Eq. (6a), the friction torque acting on the 
journal is 

2 3 64 x 2 x 5x 40 x10 x 20 63.165 lbs.in
0.02

T π −

= =        (6b) 

 
Check: The friction torque acting on the journal can be written from Eq. (12.8), see page 630, as 
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22T r f l P f W r= =             (7) 
 
The coefficient of friction variable specified in the problem statement (based on Figure 12.17, see 
page 642) is 

7.7rf
c

=            (8a) 
 
Substituting  2 inr =  and 0.02 inc =  into Eq. (8a), and rearranging, the coefficient of friction is 
 

0.027.7 0.077
2

f = × =          (8b) 
 
Check: Substituting 2 in,r =  400 lbs,W =  and Eq. (8b) into Eq. (7), the friction torque acting on 
the journal is  

0.077 400 2 61.60 lbs.insT = × × =          (9a) 
 
This answer is in good agreement with Eq. (6b). Also, the coefficient of friction can be written 
from Eq. (12.9), see page 631, as 

22 ( )( )N rf
P c

μπ=           (9b) 
 
Substituting  2 in,r =  0.02 in,c =  and Eqs. (2), (3b), and (4) into Eq. (9b), the coefficient of 
friction is 

6
2 40 10 20 22 ( )( ) 0.079

20 0.02
f π

−× ×= =         (9c) 
 
Note this answer is in good agreement with Eq. (8b). However, this answer is based on Petroff’s 
equation and does not agree with the given problem statement. 
(iii) The thermal energy loss at steady state (that is, the heat rate) can be written from page 648 as 
 

Loss
2 N TH

J
π=          (10a) 

 
where for common petroleum lubricants, the Joulean heat equivalent, see page 648, is 
 

778 ft.lb / Btu 9336 in.lb / BtuJ = =        (10b) 
 
Substituting Eqs. (4), (6b), and (10b) into Eq. (10a), the thermal energy loss at steady state is 
 

Loss
2 20 63.165 0

9336
.850 Btu H π × ×= =        (11a) 

 
Substituting Eqs. (4), (9a), and (10b) into Eq. (10a), the thermal energy loss at steady state is 
 

Loss
2 20 61.60 0.829 Btu

6
 

933
H π × ×= =        (11b) 

 
Check: The thermal energy loss at steady state can also be written from Eq. (b) on page 648 as 
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Loss
4 P r l N c f rH

J c
π  =   

  
       (12a) 

 
Substituting Eqs. (3b), (4), (9c), and (10b) into Eq. (12a), the thermal energy loss at steady state 
is 

Loss
4 20 2 5 20 0.02 0.0079 2( ) 0

9336 0
.

.
851 Btu

2
 

0
H π × × × × × ×= =     (12b) 

 
Substituting Eqs. (3b), (4), and (10b) and the flow variable specified in the problem statement into 
Eq. (12a), the thermal energy loss at steady state is 
 

Loss
4 20 2 5 20 0.02 (7.7) .8295 Btu 0

9336
H π × × × × ×= =      (12c) 

 
Note that Eq. (12b) is in good agreement with Eq. (11a) and Eq. (12c) is in good agreement with 
Eq. (11b).           
(iv) The thermal energy loss at steady state can also be written in terms of the temperature rise and 
the flow parameters from Eq. (a), see page 647, as  
 

QΔ 1 0.5 s
loss p

QH C T
Q

ρ  
= − 

 
      (13a) 

Rearranging Eq. (13a), the flow ratio can be written as  
 

2 1
Q Δ

s loss

p

Q H
Q C Tρ

 
= −  

 
       (13b) 

 
where the density and the specific heat capacity of common petroleum lubricants are specified on 
page 648, are 
 

30.0311 lbm / inρ =                  and               o0.42 Btu / lbm FpC =      (14) 
 

The flow variable, see Figure 12.18, page 643, is specified in the problem statement as 
 

3.6Q
r c N l

=         (15a) 

 
Substituting  2 inr = , 0.02 in,  c =  5 in,l =  and Eq. (4) into Eq. (15a), and rearranging, the flow 
rate (that is, the volumetric oil flow) is 
 

3= 3.6(2 0.02 20 5) =14.4in /sQ × × ×       (15b) 
 
Substituting the specified temperature rise Δ 5 FT = °  and Eqs. (11), (12b), and (15b) into Eq. 
(13b), the flow ratio can be written as 
 

( )( )( )( )3 3

0.829 Btu2 1
0.0311 lbm/in 0.42 Btu / lbm F 14.4 in / s 5 F

sQ
Q

 
 = −
 ° ° 

    (16a) 
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Therefore, the flow ratio is 

0.24sQ
Q

=         (16b) 

 
Check: The flow ratio can also be obtained from Eq. (12-19), see page 648, that is 
 

( )( )
9.70Δ ( / )

1 0.5 / /
F

s

T f r c
P Q Q Q r c N l

=
−

      (17a) 

 
Rearranging this equation, the flow ratio can be written as 
 

( )
( / )2 1

9.70 Δ /
s

F

Q f r c P
Q T Q r c N l

 
= −  

 
      (17b) 

 
Substituting the temperature rise Δ 5 F,T = °  and Eqs. (1b), (7a), and (14), into Eq. (17b), the flow 
ratio can be written as 

( )
(7.7)(20)2 1

9.70(5) 3.6
sQ

Q
 

= −  
 

       (18a) 

 
Therefore, the flow ratio is 

0.24sQ
Q

=         (18b) 

 
Note that Eq. (18b) is in complete agreement with Eq. (16b). 
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Solution to Problem 4.  
(i) The transmitted load can be written from Eq. (13-35), see page 712, as  
 

33000t
t

HW
V

=  (1) 

 
The pitch line velocity can be written from Eq. (13-34), see page 711, as       
 

ft/min
12

G G
t

d nV π=  (2a) 
 

Substituting the pitch circle diameter of the gear 5 inGd =  and the speed of the gear 500 rpmGn =  
into Eq. (2a), the pitch line velocity is 
 

5 500 654.5 ft/ min
12tV π × ×= =  (2b) 

 
Substituting the horsepower 5hpH =  and Eq. (2b) into Eq. (1), the transmitted load is  
 

33000 5 252.1 lb
654.5tW ×= =  (3) 

 
The radial component of the load can be written from Figure 13-30, see page 713, as  
 

tanr tW W φ=  (4a) 
 

Substituting Eq. (3) and pressure angle 020φ =  into Eq. (4a), the radial component of the load is  
 

0252.1 tan 20 91.76 lbrW = × =         (4b) 
 
(ii) The AGMA normal stress due to bending of the pinion teeth can be written in US customary 
units from Eq. (14-15), see page 751, as 
 

( )t
o v s m B

W P K K K K K
F J

σ =  (5) 

 
To determine the bending strength geometry factor J for the pinion. The diametral pitch can be 
written from Eq. (13-1), see page 684, as 

NP
d

=  (6) 
 

Substituting the diametral pitch 18 inchesP −=  and the pitch circle diameter of the gear 5 inGd =  
into Eq. (6), and rearranging, the number of teeth on the gear is 
 

8 5 40G GN P d= = × =  (7a) 
 
Therefore, the number of teeth on the pinion is 
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8 3 24p pN P d= = × =  (7b) 
 

Since 24pN =  and the loads are applied at the tip of the teeth then the bending strength geometry 
factor for the pinion teeth from Figure 14-6, see page 759, is 
 

0.25J =  (8) 
 
To determine the overload factor. For light shock input and moderate shock output the overload 
factor from the table on page 772, see Figure 14-17, is  
 

1.5oK =  (9a) 
 
The dynamic factor for the pinion is given in the problem statement as 
 

1.25vK =  (9b) 
 
The size factor for the pinion, see Eq. (a), page 765, is given in the problem statement as 
 

1.0sK =           (9c) 
 
The load distribution factor for the pinion, see Eq. (14-30), page 765, is given in the problem 
statement as 

mK  = 1.0         (9d) 
 
Since the pinion is solid then the rim thickness factor for the pinion, see Section 14-16, page 770, 
is  

BK = 1.0        (9e) 
 

Substituting the face width ,1.25 inchesF =  the diametral pitch 1,8 inchesP −=  and Eqs. (3), (8), 
and (9) into Eq. (5), the AGMA normal stress due to bending of the pinion teeth can be written as 
 

252.1 8 (1.5 1.25 1.0 1.0 1.0) kpsi
1.25 0.25

σ ×= × × × × ×
×

 (10a) 

 
Therefore, the AGMA normal stress due to bending of the pinion teeth is      
 

12.1 kpsiσ =  (10b) 
 
(iii) The AGMA bending factor of safety for the pinion can be written from Eq. (14-41), see page 
771, as  

F
fbS

S
σ

=  (11) 
 
where the fully corrected bending fatigue strength can be written as 
 

tSN

T R
fb

YS
K K

 
=  
 

 (12) 
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For commercial quality carburized and hardened Grade 1 steel gears, the repeatedly applied 
bending strength stress-cycle factor, for number of load cycles greater than 710 ,  from Figure 14-
14, see page 769, can be written as 

0.01781.3558NY N −=  (13a) 
 

Substituting the number of load cycles 910 cyclesN =  into Eq. (13a), the repeatedly applied 
bending strength stress-cycle factor is 
 

9 0.01781.3558(10 ) 0.937NY −= =  (13b) 
 

Note that the larger the value of NY  then the larger the bending factor of safety for the pinion. This 
is consistent with using commercial quality gears. If precision gears are used then a lower factor 
of safety would be acceptable.  

The gearset is operating at room temperature, therefore, the temperature factor from page 770, 
is   

KT = 1           (14) 
 

The reliability factor, for 0.995R = , can be written from the least-squares regression fit, see 
Eq. (14-38), page 769, as  

0.50 0.109ln (1 )RK R= − −  (15a) 
 
Substituting the specified reliability 0.995R =  into Eq. (15a), the reliability factor is   
 

0.50 0.109ln (1 0.995) 1.077RK = − − =  (15b) 
 

Substituting the repeatedly applied bending strength 55 kpsitS =  and Eqs. (13b), (14), and (15b) 
into Eq. (12), the fully corrected bending strength is 
 

0.937 x 55 47.85 kpsi
1.0 1.077fbS  = = × 

 (16) 

 
Substituting Eqs. (10b) and (16) into Eq. (12), the AGMA bending factor of safety for the pinion 
is 

47.85 3.95
12.1FS = =  (17) 

 
 


