
ECE 468/573 — Midterm 1
September 26, 2013

Name: ! ______________________________________

Purdue email: ! ______________________________________

Please sign the following:
I affirm that the answers given on this test are mine and mine alone. I did not receive
help from any person or material (other than those explicitly allowed).

 X ___

Note: ECE 468 students do not have to complete Part 6.

Part Points Score
1 10

2 17

3 12

4 26

5 35

6 15

Total 115

Part 1: Short answers (10 points)

1) You are writing a program where different users of the program will use it for
very different purposes, and stress different parts of the application. Would
you rather compile this program using a regular compiler or a just-in-time
compiler? Why or why not? (5 points)

JIT: better able to account for specific behavior of user at runtime when compiling, can
optimize for the specific usage scenario.

I was looking for something about “runtime optimization” or “optimization based on
usage”

2) Most Android phones, and all iPhones, use processors that support the ARM
instruction set. Android phones use software written in a Java-like language,
compiled to bytecode, while iPhones use software written in Objective-C,
compiled to ARM assembly. Intel developed a line of phones based on their
x86-based Atom processor. Explain why its would be easier to have an Atom
phone run Android applications than iOS applications (assume that Apple has
an x86 port of iOS that Intel can use). (5 points)

Because Android applications are distributed as machine-independent bytecode. All
Intel needs to do is provide a Dalvik VM/JIT, and Android applications can run on Atom.
iOS applications would need to be recompiled from source. I was looking for some
discussion of machine-independence of Android apps, plus some reference to VMs or
JIT compilers.

Part 2: Regular expressions, finite automata and scanners (17 points)

1) Can a language that has strings with some number of ‘a’s and ‘b’s (in any
order) followed by at least as many ‘c’s as there were ‘a’s and ‘b’s be captured
with a regular expression? If so, give the regular expression; if not, explain why.
(5 points):

No. Need to be able to count the number of ‘a’s and ‘b’s, which FAs can’t do (and hence
no regex possible). Was looking for something about memory or counting

2) Consider the following NFA. Fill in the transition table below with its
corresponding DFA using the subset construction. (8 points):

1

2

3

4

5

a

c

a

c

b

b

c

a

a

a

6

7

b,c b,c
b

b

State Final? a b c
1 No 2 — 3

2 No 3 — 4

3 No — 3, 4 5

4 No 6, 7 4 —

3, 4 No 6, 7 4 5

5 No 7 5 —

6, 7 Yes — 6, 7 6, 7

7 Yes — 6 6

6 Yes — 7 7

3) List which states should be merged when you reduce the above DFA (4 points):

{4} and {5} can be merged. {6}, {7} and {6, 7} can be merged.

Part 3: Grammars (12 points)

Let G be the grammar:

Using this grammar, answer the following questions.

1) What are the terminals and non-terminals of this grammar? (6 points)

Terminals: x, y, z, $
Non-terminals: S, A, B

2) Draw the parse tree for the string “xyzzz$” (6 points)

S ! AB$

A ! xAz

A ! yAz

A ! �

B ! Bz

B ! �

S

A B $

x A z

y A z

B z

λ

λ

Part 4: LL parsers (26 points)

Answer the questions in this part using the same grammar from Part 3.

1) Give the First sets for each non-terminal in the grammar (6 points)

First(S) : {x, y, z, $}
First(A): {x, y, λ}
First(B): {z, λ}

2) Give the Follow sets for each non-terminal in the grammar (6 points)

Follow(S) : {}
Follow(A): {z, $}
Follow(B): {z, $}

3) Give the Predict sets for each production in the grammar (6 points)

Predict(1): {x, y, z, $}
Predict(2): {x}
Predict(3): {y}
Predict(4): {z, $}
Predict(5): {z}
Predict(6): {z, $}

4) Fill in the following parse table (6 points)

x y z $

S 1 1 1 1

A 2 3 4 4

B 5, 6 6

5) Is the grammar LL(1)? Why or why not? (2 points)

No: predict conflict in the table when expanding B with a lookahead of z.

Part 5: LR(0) Parsers (35 points)

Use the following grammar for the next questions:

1) Fill in the missing information for the for the following CFSM (10 points)

State 0

S → • A$
A → • xz
A → • xAz
A → • yAz

State 1

S → A • $
State 2

S → A$ •

A $

State 4

A → x • z
A → x • Az
A → • xz
A → • xAz
A → • yAz

State 3

A → y • Az
A → • xz
A → • xAz
A → • yAz

State 5

A → yA • z

State 7

A → xA • z

x
y

y

x

y

x
A

A

State 6

A → yAz •

State 8

A → xAz •

State 9

A → xz •

z

z

z

2) List the reduce states in the above CFSM, and the shift states (8 points)

Shift: 0, 1, 3, 4, 5, 7
Reduce: 6, 8, 9 (and 2 is an accept state)

3) Is this an LR(0) grammar? Why or why not? (2 points)

Yes. No S/R conflicts or R/R conflicts

1.S ! A$

2.A ! xAz

3.A ! yAz

4.A ! xz

4) For the following sub-questions, use the CFSM you built in the previous
question. Each question will provide the state of the parser in mid-parse, giving
the state stack (most recent state on the right) and the next token. For each
question, give the action the parser will take next, using the format “Shift X” for
shift actions (where X is the state being shifted to) and “Reduce R, goto X” for
reduce actions (where R is the rule being reduced, and X is the state the parser
winds up in after finishing the reduction). Also provide the new state stack. (3
points each)

a) State stack: 0 3 3 4. Next token: x

Shift ! ! [4 0 3 3 4 4]

b) State stack: 0 1 2. Next token: none

Accept

c) State stack: 0 3 4 9. Next token: z

Reduce 4, goto 5! [0 3 5]

d) State stack: 0 4 4 7 8. Next token: z

Reduce 2, goto 7! [0 4 7]

e) State stack: 0 4 3. Next token: z

Parse error (parser will try to shift, but no transition to take when it sees a ‘z’)

Part 6: LR(1) Parsers (ECE 573 only) (15 points):

1) Consider the grammar from Part 3. Is the grammar LR(0)? Why or why not? (5
points)

No. The lambda rule for A means that State 0 will have a S/R conflict

2) Show the first state of the LR(1) machine you would build for the grammar in
Part 3 (including lookahead). (5 points)

S → • AB$, {}
A → • xAz, {z, $}
A → • yAz, {z, $}
A → λ •, {z, $}

3) Give the action table entries for the first state (i.e., for each token that could be
coming up, say whether the parser would shift or reduce). For reduce actions, say
what rule would be reduced. (5 points)

x: shift
y: shift
z: reduce 4
$: reduce 4

