EES573 Fall 2002, Exam 2

open book, open notes. if a question seems ambiguous, ask me to clarify the ques-
tion. If my answer doesn’t satisfy you, please state your assumptions. Look at the
black board occasionally to make sure I haven’t added information about a question as
a result of another students inquiries. Papers will be taken up at 4:25

1: Syllabus question. Will questions about the programming assignments will be
answered by the TA the day the programs are due?

2; Circle all that are true
féé Single pass compilers make program optimization more difficult

b. Single pass compilers make error detection impossible

. #Single pass compilers tend to be faster than multi-pass compilers

d. Single pass compilers tend to use less storage than multi-pass compilers

2: Circle all that are true

{&jTokens are produced from input by the scanner

b. Tokens are produced from input by the parser

5

%E LL parsers predict the next token(s) to be seen

agjLR parsers recognize strings of tokens and non-terminals as right-hand-sides of
productions

e. LL scanners predict the next character in the input program that will be in a token

3: Circle all that are true:

oo

b. LL parsers make it easier to maintain a semantic stack

L parsers make it easier to invoke action routines within a production

¢,..LR parsers make it easier to invoke action routines within a production

R parsers make it easier to maintain a semantic stack

4: Circle all that are true:

\a./Linear lists, hash tables and binary trees can be used to implement symbol tables

b. The number of hash table entries needed by a procedure is known after parsing the
formal parameter list for the procedure

s
%@;&inear lists take O(IN'?) time to process NV entries
@Well designed hash tables take O(N) time to process IV entries

5: Given the NDFA:
Start state is 1

e
the set of states after converting to a non-minimal DFA is: (where “[7, j]” denotes the
state formed from states ¢ and j in the original NDFA.)

A {[1,2,3,4],[5,6],[7]}
B {[1,2,3,4],[3,4],[5], 6], [7]}
C“{];i;z]a[374]a[5’6]’[7]}
®{1L,2,(3,4). (5,60, [5,6, 7>
[

E {[1,2],3,4], (5], [6], [7]}

program main() { symbol name n | Hash(n)
inti, j; a 1
int array a[1:100,5:20]; i 1
void procedure x() { j 2
6: int i; k 2
int array b[3:19]; 1 1
} m 0
} X 1
b 2

6 continued: A compiler uses a hash table T such that bucket T'[¢] consists of a linked
list of nodes, with one node for each symbol. When a node is added to a bucket, it is
placed at the end of the linked list, i.e. the bucket always points to the first symbol
added. Entries are added in the order they are encountered in the program. New scopes
are formed using a new hash table.

Show the contents of the hash table for each scope in the program above, and the
values of the different fields for each identifier. Unused fields should be left blank.
Identifier names must be kept for each entry. String table entries start at 1 (entry num-
bers is shown in the string table), and are separated by blanks. Pointers to nodes should

be shown by drawing an arrow.

T 0 1y 213 4|5

% At

6

3 . P ‘W'“‘m_

sir index ‘@ base type __"\@‘Z

field! ... ficld n offsets

num dims Ibl ubl

str index g

fieldl ... field n offsets

base type L&T

mmdims 3 Lt ubl oo
1b2 _§_ ub2 _‘zﬁ b3 ___ ubd ___
next N
,./“)/)»
{/ str index__?_ basc type _;;4‘% e

w fieldl ... field n offsets
num dims bl ___ ubl___
2 ___ wb2____ b3____ ub3___
str indcx_ﬁ_ base type ___

fieldl ... field n offsets

What routine is this table for?

%

&

bl g ubl ﬁ%

b2 ub2 b3 ub3

num dims %

£

What routine is this table for?

¥

P L A
@ strindex e) base type ___ 1 é:
field! ... field n offsets 2
num dims Ibl ubl 3
b2 ub2_ b3 ub3___ ézg
)
5 C{
str index base type P
fieldl ... field n offsets
P
num dims bl ubl “Z,
B2 uwb2__ . b3 __ ub3____ 8
9 -
L
10
str index _% base type 46T "
fieldl ... field n offsets 2
12
num dims bl ubl
152 ub2 b3 ub3 13
.
_ String
% table
(fill in ID
El
T o] 1] 23|45 names)

7: In the expression a = b + c¢ the values of

a. a, b and ¢ are l-values

r;} ais an l-value, and b and ¢ are r-values

R

f/m

¢. a,band c are r-values
d. cannot tell without seeing how a is used next

e. cannot tell without seeing where b and ¢ are computed

The following grammar is used in questions 8 and 9.

if stmt — if #startif bexpr #if _test then stmtlist
elseif #gen jump F#gen_elselabel b expr #if_test then stmts
else part end if; #gen_outlabel
else part — else #gen_jump #gen_else label stmilist
else part — Fgen_else label

where the semantic routines are defined as in the book (see pages 429 t0 431.)

8: If the first line of the grammar is changed to:

if stmt — if bexpr#xyz then stmtlist

define the #xyz routine. The definition may include calls to any semantic action rou-
tines defined in the grammar above.

Coanpot
9: Briefly state why caast the second line of the grammar aboveé\ye rewritten as:

elseif bexpr #gen_jump #gen_ else label #if_test then stmis

10: Put the grammar:

if stmt — if ftstart_if bexpr #if _test then stmtlist
else part end if; #gen_outlabel
else part — else #gen_jandl stmtlist
else part — Ffgen else label

into a form suitable for use by an LR parser generator.

{ iy
?ﬁiﬁ Uy

The following program is used in questions 11.

program a() begin
int X;
procedure b (int ¢, int d) begin
procedure ¢ (int f) begin
intc, int g;
...callb...
ende;
procedure h (int i) begin
int d; int j;

end h;
...if () then call h endif ...
...if () then call e endif ...
end b;
...callb...
end program

Assume in these questions that the first call to some procedure p is denoted p, the
second is denoted p' and the third p".

11: Consider the sequence of calls and returns a, b, e, ', h, return from h, e'. Circle
the stack configuration after this sequence (the stack grows towards the bottom of the
page, i.e. if a calls b, b’s activation record is closer to the bottom of the page.) Vertical

lines separate different activation reco@%gnor@pty activation records.
thoi

choice A choice B ce C choice D
ret. addr. ret. addr. ret. addr. ret. addr.
static info static info static info static info
X X [X X

ret. addr. ret, addr. / ret. addr. ‘Eret. addr.
static info static info static info static info
c,d f,c,g / c,d }c, d,

ret. addr. ret. addr. [l ret. addr. ret. addr
static info static info \ static info static info
f.c, g c, d f,c, g f,c, g
ret. addr. ret. addr. k ret. addr. |

static info static info \ static info

¢, d f,c, g i ¢, d

ret. addr. ret. addr.

static info | static info

i,d,j NS, c, g

ret. addr. N

static info '

f,c,g

