
ECE 468 & 573 — Midterm 2
October 31, 2013

Name: ! __KEY______________________________

Purdue email: ! ______________________________________

Please sign the following:
I affirm that the answers given on this test are mine and mine alone. I did not receive
help from any person or material (other than those explicitly allowed).

 X ___

Part Points Score
1 10

2 10

3 25 [+10]

4 35

5 20 [+10]

Total 100 [+20]

Part 1: Semantic actions (10 pts)

1) Consider the following activation record after calling a function, foo. Give a
possible function declaration for foo, showing the arguments and return
values, including types. Assume the language supports ints (4 bytes) and
doubles (8 bytes). Say whether the code that generated this activation record
used caller- or callee-saves registers. (6 points)

! ! ! ! This uses caller-saves registers (the registers are in the part
! ! ! ! of the stack managed by the caller)

! ! ! ! function declaration matching stack:
! ! ! ! double foo (double x, int y)

! ! ! ! The definition of foo would also have two local ints, a and b

2) Draw the abstract syntax tree for the following piece of code (4 pts):
a := b + c * d + e

Rest of stack

return value: 8 bytes

x: 8 bytes

y: 4 bytes

return address: 4
bytes

old frame pointer: 4
bytes

a: 4 bytes

b: 4 bytes

Saved registers

:=

a +

+

b
*

c d

e

Part 2: Common subexpression elimination (10 pts)

For the next questions, consider the following piece of code:

1: A = B + C;
2: B = B + C;
3: Q = A + C;
4: A = A + C;
5: P = B + C;

1) Assume there is no aliasing between variables. For each statement, list which
expressions are “available” after the statement executes (5 pts)

1 B + C

2

3 A + C

4

5 B + C

2) What does the code look like after performing CSE? Leave the code in IR form.
When eliminating a redundant expression, replace it with the variable that
holds the previous result of computing the expression (3 pts)

1: A = B + C;
2: B = A;
3: Q = A + C;
4: A = Q;
5: P = B + C;

3) How would your response to part 2 change if A and B were aliased? (2 pts)

Statement 2 would no longer be redundant (statement 1 would immediately kill “B + C”)

Part 3: Register allocation (25 pts [+10 for 573])

For the next 3 problems, consider the following code (assume this is the full
program):

! 1: A = 7
! 2: B = 8
! 3: T1 = A + B
! 4: T2 = T1 + C
! 5: C = A + B
! 6: T3 = T2 + C
! 7: A = C + T3
! 8: T4 = A + B
! 9: B = A + T4
! 10: WRITE(B) //this counts as a use of B

1) Show which variables and temporaries are live after each instruction (assume
no aliasing) (10 pts)

1 A C

2 A B C

3 A B C T1

4 A B T2

5 B C T2

6 B C T3

7 A B

8 A T4

9 B

10

2) Consider Instruction 7 in the above code. What variables would be live after
instruction 7 if A may be aliased to B and C (5 points)

A, B and C (instruction 8 uses A and B, and may use C because A may be aliased to C)

For the following scenarios (Not the same code as the previous page!), show
what code needs to be generated for the given three-address-code instruction
using bottom-up register allocation, and give the state of the registers after code
generation (if a value in a register is dirty, mark it with a *) If variables need to be
spilled, always spill the variable in the numerically lowest register first. Assembly
should take the form [Rx = Rb op Ry], [LD var, Rx] or [ST Rx, var]

3) Before the instruction, the state of the registers is as follows:

R1 R2 R3

A B* C*

a) What code is generated for !A = A + D where A, B, C and D are live after this
instruction (3 points)?

ST R2, B
LD D, R2
R1 = R1 + R2

b) What is the state of the registers after this code (2 points)?
R1 R2 R3

A* D C*

4) Before the instruction, the state of the registers is as follows:
R1 R2 R3

D* B E

a) What code is generated for !A = F + G where A, B, D, and E are live after this
instruction (3 points)?

ST R1, D
LD F, R1
LD G, R2 //Free R1 and R2
R1 = R1 + R2

b) What is the state of the registers after this code (2 points)?
R1 R2 R3

A* E

5) [ECE 573 only] Consider the following interference graph (10 points):

A

B

C

D

E

F

a) Give the stack generated during the simplification phase, assuming a machine
with 3 registers. Mark potentially spilled variables with a *. When simplifying
the graph, always choose the alphabetically-earliest legal variable to remove
from the graph first; if there are no legal variables, choose the alphabetically
earliest variable to spill. (5 points)

D, A, C, B, E, F (Note that once D is removed from the graph, A can be removed, so it is
removed next)

b) Show which variables are assigned to which registers. If a variable has to be
spilled, indicate so. When assigning registers to variables during the coloring
phase, choose the numerically-earliest legal register whenever you have a
choice. You do not have to do any code rewriting; just mark spilled variables
and continue assigning registers (5 points)

R1: F, C
R2: E, A
R3: B, D

Part 4: Instruction Scheduling (35 pts)

For the following problems, consider a machine which has 2 ALUs, a MU and a
LD/ST unit. The architecture has five instructions: ADD, SUB, MUL, LD and ST.
ADD and ST take one cycle each, SUB, MUL and LD take two cycles each. The
reservation tables for the instructions are given below (note that the MU is fully
pipelined, so a new MUL instruction can be issued in every cycle).

ADD:

SUB:

MUL:! ! ! ! ! ! ST:

LD:

ALU0 ALU1 MU LD/ST
X

ALU0 ALU1 MU LD/ST
X

ALU0 ALU1 MU LD/ST
X

X

ALU0 ALU1 MU LD/ST
X

X

ALU0 ALU1 MU LD/ST
X

ALU0 ALU1 MU LD/ST
X

ALU0 ALU1 MU LD/ST
X

X

ALU0 ALU1 MU LD/ST
X

X

1) Draw the data-dependence graph for the following piece of code, including
latencies. Show the heights of each node in the graph (15 pts):

! 1: LD A, R1; //Load A into R1
! 2: LD B, R2;
! 3: R3 = R1 + R2;
! 4: LD C, R4
! 5: R5 = R1 * R3;
! 6: R6 = R3 * R2;
! 7: R7 = R1 - R5;
! 8: R8 = R4 + R6;
! 9: R9 = R7 + R8
! 10: ST(R9), D; //Store R9 into D

LD A, R1 [9] LD B, R2 [9]

LD C, R4 [5]R3 = R1 + R2 [7]

R6 = R3 * R2 [5]R5 = R1 * R3 [6]

R8 = R4 + R6 [3]R7 = R1 - R5 [4]

R9 = R7 + R8 [2]

ST R9, D [1]

2
2

2
2

1 1

2

22

2 1

1

2) For each instruction above, show in which cycle it will be executed if we use
height-based list scheduling. If there is a tie in heights, give priority to the
instruction earlier in program order. Show your work in the table below (you
may not use all the slots) (20 points)

Cycle ALU1 ALU2 MU LD/ST Inst(s) scheduled

1 1 1

2 2 1 2, 1 (cont)

3 4 2 4, 2 (cont)

4 3 4 3, 4 (cont)

5 5 5

6 6 6, 5 (MU free, but 5 not done)

7 7 7, 6 (MU free, but 6 not done)

8 7 8 8, 7 (cont)

9 9 9

10 10 10

Part 4: Loop optimizations (20 pts [+ 10 for ECE 573])

For the next 2 problems, consider the following code:

! 1: A = 2
! 2: READ(B) //B = value provided by user
! 3: Q = B * 3
! 4: C = 3 * A + 2
! 5: D = B * A + 3
! 6: A = A + Q
! 7: if (A < B) goto 3
! 8: A = E + B
! 9: B = 12

1) Draw the control flow graph for this code (one CFG node for each basic block).
(7 points)

2) Identify any loop-invariant statements in the program. Can they be moved
outside the loop? (3 points)

Q = B * 3 is loop invariant, and can be moved

A = 2
READ (B)

Q = B * 3
C = 3 * A + 2
D = B * A + 3

A = A + Q
if (A < B) goto 3

A = E + B
B = 12

3) Give the code that would be produced after performing strength reduction (10
points). For partial credit, identify any loop induction variable(s) and mutual
induction variable(s). If you identified any loop invariant code in the previous
question, do not move it outside the loop.

! 1: A = 2
! 2: READ(B) //B = value provided by user
! 2’: C’ = 3 * A + 2
! 2’’:D’ = B * A + 3
! 3: Q = B * 3
! 4: C = C’
! 5: D = D’
! 6: A = A + Q
! 6’: C’ = C’ + Q * 3
! 6’’:D’ = D’ + B * Q
! 7: if (A < B) goto 3
! 8: A = E + B
! 9: B = 12

induction variable: A
mutual induction variables: C, D

4) [573 only] Apply linear test replacement to the code in the previous part. (10
points)

! 1: A = 2
! 2: READ(B) //B = value provided by user
! 2’: C’ = 3 * A + 2
! 2’’:D’ = B * A + 3
! 3: Q = B * 3
! 4: C = C’
! 5: D = D’
! 6: //A = A + Q
! 6’: C’ = C’ + Q * 3
! 6’’:D’ = D’ + B * Q
! 7: if (C < 3 * B + 2) goto 3
! 8: A = E + B
! 9: B = 12

