35\% Problem 1: Airy Stress Function, Principal Stresses, and Principal Directions

Given: Consider a thin rectangular panel loaded as shown in the figure below. The use of "thin rectangular panel" refers to a plane stress condition, where all stresses in the z-direction are zero. The following Airy stress function must be used to solve the problem:

Airy stress function: $\emptyset_{(x, y)}=c_{1} x^{2}+c_{2} x y+c_{3} y^{2}$

Figure: A thin rectangular panel

Required:

(1) Traction vectors on the left surface $(x=-a)$ and the bottom surface $(y=-b)$. (Please answer in terms of c_{1}, c_{2}, and c_{3})
(2) Constants c_{1}, c_{2}, and c_{3} in the Airy stress function $\emptyset_{(x, y)}$. (Please answer in terms of σ_{0})
(3) Principal stresses σ_{1} and σ_{2} if $\sigma_{0}=1 \mathrm{MPa}$. Express your answers in "MPa."
(4) Principal directions $\theta_{p 1}$ and $\theta_{p 2}$ if $\sigma_{0}=1$ MPa. Express your answers in "degree."
(For Parts 3 and 4, you may use either an eigen approach or Mohr's circle approach. Correct answers without proper justification will not receive a full credit.)

Solution: Write your solution below. Use the reverse side if necessary.

Solution

1.1

The Airy stress function is:

$$
\begin{equation*}
\Phi(x, y)=c_{1} x^{2}+c_{2} x y+c_{3} y^{2} \tag{1}
\end{equation*}
$$

It is necessary to check the equilibrium equation and compatibility equation before using it.

- Check equilibrium: Automatically satisfied due to the use of an Airy stress function
- Check compatibility:
- Order of the given $\Phi(x, y)=2$
- Order of compatibility equation $\nabla^{2} \nabla^{2} \Phi=4$

Therefore, the compatibility equation is also satisfied.
Write $\sigma_{x x}, \sigma_{y y}, \tau_{x y}$ using the given $\Phi(x, y)$

$$
\begin{gather*}
\sigma_{x x}=\frac{\partial^{2}}{\partial y^{2}}\left(c_{1} x^{2}+c_{2} x y+c_{3} y^{2}\right)=\frac{\partial}{\partial x}\left(c_{2} x+2 c_{3} y\right)=2 c_{3} \\
\sigma_{y y}=\frac{\partial^{2}}{\partial x^{2}}\left(c_{1} x^{2}+c_{2} x y+c_{3} x^{2}\right)=\frac{\partial}{\partial x}\left(2 c_{1} x+c_{2} y\right)=2 c_{1} \tag{2}\\
\tau_{x y}=-\frac{\partial^{2}}{\partial x \partial y}\left(c_{1} x^{2}+c_{2} x y+c_{2} y^{2}\right)=-\frac{\partial}{\partial x}\left(c_{2} x+2 c_{3} y\right)=-c_{2} \\
{[\sigma]=\left[\begin{array}{cc}
\sigma_{x x} & \tau_{x y} \\
\tau_{x y} & \sigma_{y y}
\end{array}\right]=\left[\begin{array}{cc}
2 c_{3} & -c_{2} \\
-c_{2} & 2 c_{1}
\end{array}\right]} \tag{3}
\end{gather*}
$$

Applying B.C.: $\{t\}=[\sigma]\{n\}$
On the left surface $(x=-a):\{n\}=\left\{\begin{array}{c}-1 \\ 0\end{array}\right\}$

$$
\{t\}=\left[\begin{array}{cc}
2 c_{3} & -c_{2} \tag{4}\\
-c_{2} & 2 c_{1}
\end{array}\right]\left\{\begin{array}{c}
-1 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
-2 c_{3} \\
c_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-4 \sigma_{0} \\
0
\end{array}\right\}
$$

On the bottom surface $(y=-b):\{n\}=\left\{\begin{array}{c}0 \\ -1\end{array}\right\}$

$$
\{t\}=\left[\begin{array}{cc}
2 c_{3} & -c_{2} \tag{5}\\
-c_{2} & 2 c_{1}
\end{array}\right]\left\{\begin{array}{c}
0 \\
-1
\end{array}\right\}=\left\{\begin{array}{c}
c_{2} \\
-2 c_{1}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
-2 \sigma_{0}
\end{array}\right\}
$$

1.2

From the B.C. given in the problem, we can get

$$
[\sigma]=\left[\begin{array}{cc}
\sigma_{x x} & \tau_{x y} \tag{6}\\
\tau_{x y} & \sigma_{y y}
\end{array}\right]=\left[\begin{array}{cc}
2 c_{3} & -c_{2} \\
-c_{2} & 2 c_{1}
\end{array}\right] \stackrel{\text { set }}{=}\left[\begin{array}{cc}
4 \sigma_{0} & 0 \\
0 & 2 \sigma_{0}
\end{array}\right]
$$

Therefore, we can get

$$
\left.\begin{array}{l}
2 c_{3}=4 \sigma_{0} \rightarrow c_{3}=2 \sigma_{0} \tag{7}\\
-c_{2}=0 \quad \rightarrow c_{2}=0 \\
2 c_{1}=2 \sigma_{0} \quad \rightarrow c_{1}=\sigma_{0}
\end{array}\right\} \Phi(x, y)=\sigma_{0} x^{2}+2 \sigma_{0} y^{2}
$$

Check:

$$
\begin{align*}
\sigma_{x x} & =\frac{\partial^{2} \Phi}{\partial y^{2}}=\frac{\partial^{2}}{\partial y^{2}}\left(\sigma_{0} x^{2}+2 \sigma_{0} y^{2}\right)=4 \sigma_{0} \\
\sigma_{y y} & =\frac{\partial^{2} \Phi}{\partial x^{2}}=\frac{\partial^{2}}{\partial x^{2}}\left(\sigma_{0} x^{2}+2 \sigma_{0} y^{2}\right)=2 \sigma_{0} \tag{8}\\
\tau_{x y} & =-\frac{\partial^{2} \Phi}{\partial x \partial y}=-\frac{\partial^{2}}{\partial x \partial y}\left(\sigma_{0} x^{2}+2 \sigma_{0} y^{2}\right)=-\frac{\partial}{\partial x}\left(4 \sigma_{0} y\right)=0
\end{align*}
$$

1.3

Using Mohr's circle:

Figure 1: The Column Mohr's circle

$$
\begin{align*}
c & =\left(\sigma_{a v g}, 0\right)=\left(3 \sigma_{0}, 0\right) \\
R & =\tau_{\max }=\sqrt{\left(\sigma_{0}\right)^{2}+(0)^{2}}=\sigma_{0} \\
\sigma_{1} & =\sigma_{a v g}+R=3 \sigma_{0}+\sigma_{0}=4 \sigma_{0}=A \tag{9}\\
& \rightarrow \sigma_{1}=A \\
\sigma_{2} & =\sigma_{m}-R=3 \sigma_{0}-\sigma_{0}=2 \sigma_{0}=B \\
& \rightarrow \sigma_{2}=B
\end{align*}
$$

Based on the analysis above,

$$
\begin{align*}
& \sigma_{1}=4 \sigma_{0}, \text { where } \sigma_{0}=1 \mathrm{MPa} \\
& \sigma_{1}=4 \mathrm{MPa} \\
& \sigma_{2}=2 \sigma_{0} \tag{10}\\
& \sigma_{2}=2 \mathrm{MPa}
\end{align*}
$$

1.4

Since $\sigma_{1}=A, \quad \sigma_{2}=B$, we have

$$
\begin{align*}
& \theta_{p_{1}}=0 \tag{11}\\
& \theta_{p_{2}}=\theta_{p_{1}}+90^{\circ}=90^{\circ}
\end{align*}
$$

Problem 1	credit
9 answers are correct	35
1) Two traction vectors	
2) Three constants	
3) Two principal stresses	
4) Two principal direction angles	
8 answers are correct	33
7 answers are correct	31
6 answers are correct	29
5 answers are correct	27
4 answers are correct	25
3 answers are correct	23
2 answers are correct	21
1 answer are correct	19
0 answer are correct. The solution procedure has minor issues	17
0 answer are correct. The solution procedure has major issues.	12
0 answer are correct. Good faith effort	8
blank	0

Note: If students did not check equilibrium and compatibility equations before using Airy stress function. A warning would be given. We did not take any points off for this exam.

35\% Problem 2: 3D Stress-Strain Relations

Given: A specimen is subjected to a compressive stress σ_{zz} and is confined in a rigid fixture so that the specimen cannot deform in the y direction (Fig. 2). However, deformation is permitted in the x -direction. The containing walls are smooth (i.e., frictionless). Assume that the specimen is isotropic, exhibits linear-elastic behavior, and has Young's modulus (E) and Poisson's ratio (v). Since the specimen is not permitted to deform in the ydirection, $\varepsilon_{\mathrm{yy}}=0$. Also, $\sigma_{\mathrm{xx}}=0$ since the specimen is permitted to deform in the $\mathrm{x}-$ direction freely.

Figure 2: A specimen in a rigid fixture

Required:

Hint: Start solving the problem with the following expression: $\{\varepsilon\}=[a]\{\sigma\}$
(1) Calculate σ_{yy} in terms of σ_{zz}, E, and/or v
(2) Calculate $\varepsilon_{z z}$ in terms of $\sigma_{z z}, E$, and/or v
(3) Calculate $\varepsilon_{\mathrm{xx}}$ in terms of σ_{zz}, E, and/or v
(4) Calculate $\Delta \mathrm{V} / \mathrm{V}$ if $\sigma_{\mathrm{zz}}=100 \mathrm{MPa}, E=70 \mathrm{GPa}$, and $v=0.33$
(Note: $\Delta \mathrm{V} / \mathrm{V}$ is the ratio of the change in volume to the original volume)
Solution: Write your solution below. Use the reverse side if necessary.

Solution:

List the constitutive relation: $\{\varepsilon\}=[a]\{\sigma\}$

$$
\left\{\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z} \\
\gamma_{y z} \\
\gamma_{x z} \\
\gamma_{x y}
\end{array}\right\}=\left[\begin{array}{cccccc}
1 / E & -v / E & -v / E & 0 & 0 & 0 \\
-v / E & 1 / E & -v / E & 0 & 0 & 0 \\
-v / E & -v / E & 1 / E & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / G & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / G & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / G
\end{array}\right]\left\{\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{z z} \\
\tau_{y z} \\
\tau_{x z} \\
\tau_{x y}
\end{array}\right\}
$$

And by the boundary condition, $\varepsilon_{y y}=\sigma_{x x}=0$
The constitutive equations can be written as:

$$
\begin{gathered}
-\frac{v}{E} \sigma_{y y}-\frac{v}{E} \sigma_{z z}=\varepsilon_{x x} \\
\frac{1}{E} \sigma_{y y}-\frac{v}{E} \sigma_{z z}=0 \\
-\frac{v}{E} \sigma_{y y}+\frac{1}{E} \sigma_{z z}=\varepsilon_{z z}
\end{gathered}
$$

Solve linear equations
$\sigma_{y y}=v \sigma_{z z}, \varepsilon_{x x}=-\frac{v(1+v)}{E} \sigma_{z z}$, and $\varepsilon_{z z}=\frac{\left(1-v^{2}\right)}{E} \sigma_{z z}$
For small deformation, $\frac{\Delta \mathrm{V}}{\mathrm{V}} \cong \varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}=-\frac{v(1+v)}{E} \sigma_{z z}+0+\frac{\left(1-v^{2}\right)}{E} \sigma_{z z}=-6.46 \mathrm{e}-4$ or $6.46 \mathrm{e}-4$ as some students may directly plug in $\sigma_{z z}=100 \mathrm{MPa}$ instead of $\sigma_{z z}=-100 \mathrm{MPa}$.

Grading Rubric

Problem 2 (35\%)

Constitutive relation or linear equations (14\%)
Realize $\varepsilon_{y y}=\sigma_{x x}=0(3 \%)$

Process of solving constitutive relation or linear equations (6\%) which leads to $\sigma_{y y}=-v \sigma_{z z}$, $\varepsilon_{x x}=\frac{v(1+v)}{E} \sigma_{z z}$, and $\varepsilon_{z z}=-\frac{\left(1-v^{2}\right)}{E} \sigma_{z z}(1 \%)$ each.
$\frac{\Delta \mathrm{V}}{\mathrm{V}} \cong \varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}(6 \%)$
Plug in all correct numerical values into $\frac{\Delta \mathrm{V}}{\mathrm{V}} \cong \varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}=\frac{v(1+v)}{E} \sigma_{z z}+0-\frac{\left(1-v^{2}\right)}{E} \sigma_{z z}$ (2\%)

Final value of $\frac{\Delta \mathrm{V}}{\mathrm{V}}$ is correct (1\%).

Prob. 2 Extra:

Some students use lame parameters and make the computation process
complicated. The last page shows the process of solving the problem with stiffness matrix by lame parameters.
The grading policy is that if you can still find the following relation:

$$
\begin{aligned}
& \varepsilon_{z z}=\frac{(\lambda+2 G)}{4 G(G+\lambda)} \sigma_{z z} \\
& \varepsilon_{x x}=\frac{-\lambda}{4 G(G+\lambda)} \sigma_{z z} \\
& \sigma_{y y}=\frac{\lambda}{2(G+\lambda)} \sigma_{z z}
\end{aligned}
$$

And states the relation between λ, G and E, v.

$$
\lambda=\frac{E v}{(1+v)(1-2 v)} \quad \text { and } \quad G=\frac{E}{2(1+v)}
$$

Or whatever your answers are and the answers could lead to

$$
\begin{gathered}
\varepsilon_{z z}=(1.273 e-11) \sigma_{z z} \\
\varepsilon_{x x}=(-6.27 e-11) \sigma_{z z} \\
\sigma_{y y}=0.33 \sigma_{z z}
\end{gathered}
$$

if the value of $\mathrm{E}=70 \mathrm{GPa}$, and $\mathrm{v}=0.33$ are plugged in. You can still get the full score.
Grading rubric are the same as the original. Just the constitutive equation and linear equation may look different. But as the problem itself has given hint that you should use $\{\varepsilon\}=[a]\{\sigma\}$, lame parameters is not encouraged here.

$$
\begin{align*}
& G_{G}\left[\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z} \\
\gamma_{x y} \\
\gamma_{x z} \\
\gamma_{x y}
\end{array}\right] \quad \varepsilon_{0 z}=1.273 \times 10^{\circ} \sigma_{z z} \\
& (\lambda+2 G) \varepsilon_{x x}+\pi \varepsilon z z=0 . \tag{1}\\
& \pi \varepsilon_{x x}+\pi \varepsilon_{z z}=\sigma_{y y} . \tag{2}\\
& \lambda \varepsilon_{z x}+(\lambda+2 G) \varepsilon_{z z}=\sigma_{z \rightarrow} \text {. } \tag{3}
\end{align*}
$$

(1).

$$
\begin{aligned}
& \text { (6) } \lambda \varepsilon_{z z}=-(\lambda+2 G) \varepsilon_{x x} \rightarrow \varepsilon_{z z}=-\frac{(\lambda+2 G)}{\lambda} \varepsilon_{x x} \\
& \lambda \varepsilon_{x x}+(\pi+2 G) \varepsilon_{z z}=\sigma_{z z} . \\
& \varepsilon_{z z}=\frac{(\lambda+2 G)}{4 G(g+\pi)} E_{z z} \\
& \rightarrow \pi \varepsilon_{x x}-\frac{(\lambda+2 G)^{2}}{\lambda} \varepsilon_{x x}=\sigma_{z z} \text {. } \\
& \rightarrow \quad \frac{\lambda^{2}-(\lambda+24)^{2}}{\lambda} \varepsilon_{x x}=\sigma_{z z} \text {. } \\
& \rightarrow \varepsilon_{x x}=\frac{\pi}{\pi^{2}-\left(\pi^{2}+2 G\right)^{2}} \sigma_{z z}=-\frac{\pi}{4 G(G+\pi)} \delta z z .
\end{aligned}
$$

(2). $\lambda \varepsilon_{x x}+\pi \varepsilon_{z z}=\sigma_{y y}$

$$
\begin{aligned}
& \rightarrow \lambda \varepsilon_{x x}+\lambda\left(-\left(\frac{\pi+2 G}{\lambda}\right)\right) \varepsilon_{x x}=E_{y y} \\
& \rightarrow \lambda \varepsilon_{x x}-\lambda \varepsilon_{x x}-2 G^{n} \varepsilon_{x x}=\sigma_{y y} \rightarrow-2 G_{x x}=\sigma_{y y} \\
& \sigma_{y y}=-2 G \cdot \frac{\pi}{-4 \pi G-44^{2}} \sigma_{z z}=\frac{\pi}{2 \pi+24} \sigma_{z z}
\end{aligned}
$$

Given:

Figure 1: Cross section of a thin-walled multi-cell torsion member
Material properties: $\mathrm{E}=72 \mathrm{GPa}, \nu=0.33$, and $\mathrm{G}=\frac{E}{2(1+v)}$
Applied torque: $T=5 \times 10^{5} \mathrm{~N} \cdot \mathrm{~m}$

Required:

(1) Areas enclosed by the center lines $\left(\overline{\mathrm{A}}_{1}\right.$ and $\left.\overline{\mathrm{A}}_{2}\right)$.
(2) Shear flows in the walls $\left(q_{1}, q_{2}\right.$, and $\left.q_{12}\right)$.
(3) Maximum shear stress ($\tau_{\text {max }}$).
(4) Angle of twist per unit length (θ).

Solution:

Set
$q_{1}=$ Shear flow on the left cell
$q_{2}=$ Shear flow on the right cell
$q_{12}=q_{1}-q_{2}=$ Shear flow in the vertical web
$T=2 \bar{A}_{1} q_{1}+2 \bar{A}_{2} q_{2}$, where $\bar{A}_{1}=100 \mathrm{~mm} \times 100 \mathrm{~mm}=.01 \mathrm{~m}^{2} \& \bar{A}_{2}=\frac{1}{2} \frac{\pi d^{2}}{4}=0.0039 \mathrm{~m}^{2}$ $G=\frac{E}{2(1+v)}=27.07 \mathrm{GPa}$

Left Cell:

$$
\theta_{1}=\frac{1}{2 G \bar{A}_{1}} \oint \frac{q}{t} d s=\frac{1}{2 G \bar{A}_{1}}\left\{\frac{s_{1} q_{1}}{t_{1}}+\frac{s_{12} q_{12}}{t_{12}}\right\}=1.8472 * 10^{-7}\left(q_{1}+q_{12}\right)
$$

Right Cell:

$$
\theta_{2}=\frac{1}{2 G \bar{A}_{2}} \oint \frac{q}{t} d s=\frac{1}{2 G \bar{A}_{2}}\left\{\frac{s_{2} q_{2}}{t_{2}}-\frac{s_{12} q_{12}}{t_{12}}\right\}=3.72 * 10^{-7} q_{2}-4.7365 * 10^{-7} q_{12}
$$

Since the entire thin-wall section must rotate as a rigid body in the plane, we require the compatibility condition: $\theta_{1}=\theta_{2}$

$$
\begin{gathered}
q_{12}=q_{1}-q_{2} \\
q_{1}=1.22214 q_{2}
\end{gathered}
$$

Plug back into θ_{1}, and let $\theta_{1}=\theta_{2}=\theta$

$$
\begin{aligned}
& \theta=2.66786 \times 10^{-7} q_{2} \\
& q_{2}=3.74832 \times 10^{6} \theta \\
& q_{1}=4.58098 \times 10^{6} \theta \\
& q_{12}=8.3266 \times 10^{5} \theta
\end{aligned}
$$

Since applied torque $T=5 \times 10^{5} \mathrm{~N} \cdot \mathrm{~m}$,

$$
\begin{gathered}
T=2 \bar{A}_{1} q_{1}+2 \bar{A}_{2} q_{2}=2(0.01)\left(1.22214 q_{2}\right)+2(0.0039) q_{2}=5 \times 10^{5} \mathrm{~N} \cdot \mathrm{~m} \\
q_{2}=1.54785 \times 10^{7} \\
q_{1}=1.89522 \times 10^{7} \\
q_{12}=3.4384 \times 10^{6}
\end{gathered}
$$

Then,

$$
\theta=2.66786 \times 10^{-7} q_{2}=4.12945 \frac{\mathrm{rad}}{\mathrm{~m}} \quad \text { or } 236.6 \frac{\mathrm{deg}}{\mathrm{~m}}
$$

Or, we can solve for θ first,

$$
\begin{gathered}
T=2 \bar{A}_{1} q_{1}+2 \bar{A}_{2} q_{2}=2(0.01)\left(4.58098 \times 10^{6} \theta\right)+2(0.0039)\left(3.74832 \times 10^{6} \theta\right) \\
=5 \times 10^{5} \mathrm{~N} \cdot \mathrm{~m}
\end{gathered}
$$

$$
\theta=4.13714 \frac{\mathrm{rad}}{\mathrm{~m}} \text { or } 237.041 \frac{\mathrm{deg}}{\mathrm{~m}}
$$

Then,

$$
\begin{aligned}
q_{2} & =1.55073 \times 10^{7} \mathrm{~N}-\mathrm{m} \\
q_{1} & =1.89522 \times 10^{7} \mathrm{~N}-\mathrm{m} \\
q_{12} & =3.44483 \times 10^{6} \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

Either one is fine.

Now, we can determine $\tau_{\max }=\frac{q}{t}$

$$
\begin{aligned}
& \tau_{\max 1}=\frac{q_{1}}{t_{1}}=\frac{1.89522 \times 10^{7}}{.003}=6.3174 \mathrm{GPa} \\
& \tau_{\max 2}=\frac{q_{2}}{t_{2}}=\frac{1.55073 \times 10^{7}}{.002}=7.75365 \mathrm{GPa} \\
& \tau_{\max 3}=\frac{q_{12}}{t_{12}}=\frac{3.44483 \times 10^{6}}{.001}=3.44483 \mathrm{GPa}
\end{aligned}
$$

Therefore, looking for the maximum value of $\tau_{\max }, \tau_{\max }=\tau_{\max 2}=7.75365 \mathrm{GPa}$

Grading Rubric

Problem 3 (30\%)
Problem setup (E, G, v, thickness, and T) (5)
T equation (2)
$\overline{\mathrm{A}}_{1}$ and $\overline{\mathrm{A}}_{2}(2)$
θ_{1} and θ_{2} integrals (4)
Compatibility eqn. (4)
q_{1} and q_{2} and q_{12} values (3)
θ values (2)
$\tau_{\max 1}, \tau_{\max 2}, \tau_{\max 3}$ eqns (3) and values (3)
Determine $\tau_{\max }$ (2)

If students made mistakes in the first place (like mistakes due to calculation errors) but did procedure correctly (due to wrong G or area, wrong $\theta_{1}, \theta_{2}, q_{1}, q_{2}, q_{12}, \tau_{\text {max }}$), then take 10% of the total grade (3\%) off. Don't take off every half point whenever you see the wrong final answer for each answer. And if student made mistakes in the second place (due to wrong relations between q_{1} and q_{2}, wrong final answers), then take 5% of total grade off (1.5%).

