Midterm Exam 1

Last Name:
Student ID: \qquad

First Name: \qquad
Section:

\bigcirc	$2: 30$	Mayer
\bigcirc	$12: 30$	Kildishev
\bigcirc	$12: 30$	Irazoqui
\bigcirc	$7: 30$	Cui
\bigcirc	$1: 30$	Michelusi

I have neither given nor received unauthorized assistance on this exam.

Instructions:

1. Adhere to the Purdue Honor Pledge. Sign the statement above before turning in your exam.
2. This is a closed-book, closed-note exam. No study materials should be visible or accessible during the exam. Use of a TI-30X IIS calculator is allowed.
3. For each question, determine the answer and then select the closest choice. Mark the choice by filling in the bubble completely: . Only the marked choice will be scored. Your work to determine an answer may be reviewed as part of an academic integrity assurance process.
4. All questions are equally weighted but are not equally difficult - manage your time wisely.
5. If you need extra space for a question, raise your hand and a proctor will provide an extra sheet of paper.
6. You have 60 minutes to complete the exam.
7. You must turn in (a) all pages of this exam and (b) any extra sheet(s) provided by a proctor.

Learning Outcomes

i. An ability to analyze linear resistive circuits.
ii. An ability to analyze first-order linear circuits with sources and/or passive elements.
iii. An ability to analyze electronic circuits with diodes and transistors.

Question	LO	Points	Score
1	i	6.67	
2	i	6.67	
3	i	6.67	
4	i	6.67	
5	i	6.67	
6	i	6.67	
7	i	6.67	
8	i	6.67	
9	i	6.67	
10	i	6.67	
11	i	6.67	
12	i	6.67	
13	i	6.67	
14	i	6.67	
15	i	6.67	

1. The cumulative charge through a cross section of a particular conductor is expressed as

$$
q(t)=\left\{\begin{array}{cc}
3 & t<0 \\
3 e^{-2 t} \mathrm{C} & t \geq 0
\end{array}\right.
$$

What is the value of current $i(t)$ in amperes at $t=0.5 \mathrm{~s}$? Assume that $q(t)$ and $i(t)$ share the same reference direction.-3$-2.207$$-1.104$$-0.552$00.5521.1042.20733.552
2. What is the energy in joules absorbed by a resistor between the beginning of time and $t=5 \mathrm{~s}$ if the graph shows the instantaneous power absorbed by the resistor? Assume that $p(t)=0$ for $t<-10 \mathrm{~s}$.040.412
2.510

For Questions 3 and 4 consider the voltages indicated on the schematic diagram.
3. What is the value of V_{E} in volts?$-8$2$-6$$-4$4$-2$68012
4. What is the value of V_{G} in volts?$-8$2$-6$$-4$$-2$0
$\bigcirc 6$
6812

$$
V_{H}=-4 \mathrm{~V}
$$

$$
V_{E}+V_{c}+V_{B}=0 \Rightarrow V_{E}=-6 V
$$

$$
V_{D}+V_{E}-V_{H}+V_{G}=0
$$

$$
\Rightarrow V_{G}=4 \mathrm{~V}
$$

5. What is the value of I_{C} in amperes?$-8$$-6$$-4$$-2$046812

$$
I_{A}=I_{C}+I_{B}
$$

$$
\Rightarrow I_{c}=2 \mathrm{~A}
$$

7. What is the value of V_{x} in volts?
$\bigcirc 0$
$\bigcirc 1$
\bigcirc
2
$\bigcirc 3$
$\bigcirc 4$
4

$\bigcirc 12$

8. What is the value of I_{x} in amperes?

$$
\begin{aligned}
& I_{1}=\frac{24 \mathrm{~V}}{4 \Omega}=6 \mathrm{~A} ; \quad I_{2}=\frac{(2 h-12) \mathrm{V}}{6 \Omega}=2 \mathrm{~A} \\
& \Rightarrow I_{x}=I_{1}+I_{2}=8 \mathrm{~A}
\end{aligned}
$$

11. What is the value of V_{o} in volts if
○ -16
-12
$\bigcirc-8$
$\bigcirc-3$
0 \qquad

$$
\begin{aligned}
V_{0} & =-2 \cdot g_{m} \cdot V_{x}=-4 V_{x} \\
V_{x} & =\frac{3}{3+1} \cdot 4 V=3 \mathrm{~V} \\
\Rightarrow V_{0} & =-12 \mathrm{~V}
\end{aligned}
$$

12.

What is the value of I_{x} in amperes?

$\bigcirc-9$	$\bigcirc-1.5$
$\bigcirc-6$	
$\bigcirc-4$	2
-3	-2

Mesh

$$
\begin{aligned}
& I_{1}=6 \mathrm{~A} \\
& I_{2}=9 \mathrm{~A}
\end{aligned}
$$

Coop 3: $1\left(I_{3}-6\right)+3 \cdot I_{3}+2\left(I_{3}-9\right)=0$

$$
\begin{aligned}
\Rightarrow I_{3} & =4 \mathrm{~A} \\
I_{x} & =I_{3}=4 \mathrm{~A}
\end{aligned}
$$

For Questions 13 and 14 consider the following network model obtained via nodal analysis:

15. What will happen to the power supplied by the source, P_{S}, and the power absorbed by resistor R_{A}, P_{A}, if resistor R_{B} is connected in parallel with resistor R_{A} ? Assume that R_{B} and R_{A} have similar but not identical resistance values. In addition to marking an answer choice, explain your reasoning as clearly, concisely, and completely as possible in the box below.P_{S} decreases and P_{A} decreases.P_{S} decreases and P_{A} stays the same.P_{S} decreases and P_{A} increases.P_{S} stays the same and P_{A} decreases.
P_{S} stays the same and P_{A} increases.P_{S} increases and P_{A} decreases.P_{S} increases and P_{A} stays the same.P_{S} increases and P_{A} increases.
P_{S} stays the same and P_{A} stays the same.

