ECE 20001

Spring 2020

Midterm Exam 1

Last Name:	First Name):			_
Student ID:	Section:	0	2:30	Mayer	
		\circ	12:30	Kildishev	
		\bigcirc	12:30	Irazoqui	
		\circ	7:30	Cui	
		\bigcirc	1:30	Michelusi	
I have neither given nor received unauthorized	assistance on this	exam.			

Instructions:

- 1. Adhere to the Purdue Honor Pledge. Sign the statement above before turning in your exam.
- 2. This is a closed-book, closed-note exam. No study materials should be visible or accessible during the exam. Use of a TI-30X IIS calculator is allowed.
- 3. For each question, determine the answer and then select the closest choice. Mark the choice by filling in the bubble completely: ●. Only the marked choice will be scored. Your work to determine an answer may be reviewed as part of an academic integrity assurance process.
- 4. All questions are equally weighted but are not equally difficult manage your time wisely.
- 5. If you need extra space for a question, raise your hand and a proctor will provide an extra sheet of paper.
- 6. You have 60 minutes to complete the exam.
- 7. You must turn in (a) all pages of this exam and (b) any extra sheet(s) provided by a proctor.

Learning Outcomes

- i. An ability to analyze linear resistive circuits.
- ii. An ability to analyze first-order linear circuits with sources and/or passive elements.
- iii. An ability to analyze electronic circuits with diodes and transistors.

Question	LO	Points	Score
1	i	6.67	
2	i	6.67	
3	i	6.67	
4	i	6.67	
5	i	6.67	
6	i	6.67	
7	i	6.67	
8	i	6.67	
9	i	6.67	
10	i	6.67	
11	i	6.67	
12	i	6.67	
13	i	6.67	
14	i	6.67	
15	i	6.67	
	•	•	•

The cumulative charge through a 1. cross section of a particular conductor is expressed as

$$q(t) = \begin{cases} 3 & t < 0 \\ 3e^{-2t} & C & t \ge 0 \end{cases}$$

What is the value of current i(t) in amperes at t = 0.5 s? Assume that q(t) and i(t) share the same reference direction.

- \bigcirc -3
- $\bigcirc 0.552$
- -2.207
- O 1.104
- \bigcirc -1.104
- \bigcirc 2.207
- \bigcirc -0.552
- \bigcirc 3

 $\bigcirc 0$

- \bigcirc 3.552
- \Rightarrow $i(0.5) = -6e^{-1} \approx -2.2A$

- 2. What is the energy in joules absorbed by a resistor between the beginning of time and t = 5 s if the graph shows the instantaneous power absorbed by the resistor? Assume that p(t) = 0 for t < -10 s.
 - \bigcirc 0
- \bigcirc 0.4
- \bigcirc 1
- \bigcirc 2

- \bigcirc 2.5
- \bigcirc 10
- 2 0 0 -10 -5 10 t(s)

 $-\Delta_{5} \qquad A_{1} = \frac{25.2W}{2} = 25$ A=35.2W=6J 2

For Questions 3 and 4 consider the voltages indicated on the schematic diagram.

- 3. What is the value of V_E in volts?
 - \bigcirc -8
- O 2
- -6
- O 4
- \bigcirc -4
- \bigcirc 6
- -2 $\bigcirc 0$
- 0 8 \bigcirc 12

- $V_B = +4 \text{ V}$
- $V_C = +2 \text{ V}$
- $V_D = -2 \text{ V}$
- $V_H = -4 \text{ V}$

- What is the value of V_G in volts? 4.
 - \bigcirc -8
- \bigcirc 2
- **○** -6
- 4
- **○** -4
- \bigcirc 6
- $\bigcirc 0$
- 0 8
- O 12
- VE+Vc+VB=0=) V=-6V VD+VE-VH+VC=0 => VG= hV

- 5. What is the value of I_C in amperes?
 - \bigcirc -8
- 2
- O -6
- O 4
- **○** -4
- \bigcirc 6
- \bigcirc -2
- 0 8
- $\bigcirc 0$
- O 12
- $I_A = I_{c} + I_{B}$ $\Rightarrow I_{c} = 2A$

IALA $I_A = +4 \text{ A}$ $C \downarrow I_C$ $I_B = +2 \text{ A}$ $I_E = -2 \text{ A}$ $I_G = -4 \text{ A}$

- 6. What is the value of R_{eq} in ohms?
 - \bigcirc 1
- O 6
- O 2
- O 9
- 34
- 1218

9 5

O 25

$$\begin{array}{ccc}
 & 2 \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

 \bigcirc 0

 \bigcirc 6

O 1

8

- O 2
- 910
- \bigcirc 3 \bigcirc 4
- $\bigcirc 10$ $\bigcirc 12$

$$3||6=2$$
L

8. What is the value of
$$I_x$$
 in amperes?

- \bigcirc 0
- \bigcirc 1

O 8

- \bigcirc 9
- O 10 O 12

 3Ω

 2Ω

9. What is the value of V_x in volts?

- O 2
- **●** −8
- **O** 4
- −4 −2
- 812
- $\bigcirc 0$
- $\bigcirc 12$ $\bigcirc 16$

- 10. What is the value of I_x in amperes?
 - $\bigcirc 0$
- \bigcirc 6
- \bigcirc 1
- \bigcirc 9
- O 4
- O 10 O 12
- 2hV 6Ω 13V 4 Ω 12 V

$$T_1 = \frac{24V}{4\Lambda} = 6A$$
; $T_2 = \frac{(24-12)V}{6\Lambda}$

$$T_{7} = \frac{(2h^{3} + 16)^{3}}{6 \Omega} = 2A$$

11. What is the value of V_o in volts if

- O -16
- -12
- O -8
- O -3
- \bigcirc 0

- O 2
- 8
- O 12
- $\bigcirc 12$ $\bigcirc 16$

$$\sqrt{\chi} = \frac{3}{3+1} \cdot 4V = 3V$$

$$=$$
 $V_0 = -12V$

- 12. What is the value of I_x in amperes?
 - \bigcirc -9
- \bigcirc -1.5
- \bigcirc -6
- O 1.5
- O 2
- **4**
- 0 6

Mesh

$$(500)^3$$
: $1(T_3-6)+3.T_3+2(T_3-9)=0$

For Questions 13 and 14 consider the following network model obtained via nodal analysis:

$$\begin{bmatrix} \frac{7}{8} & -\frac{1}{4} \\ -\frac{1}{4} & B \end{bmatrix} \begin{bmatrix} V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} A \\ -2 \end{bmatrix}$$

- 13. What is the value redacted by Box A?
 - 0 -8
- \bigcirc 1
- O -6
- \bigcirc 2
- O -4
- **4**
- O -2
- 0 6
- \bigcirc 0

- O 8
- 14. What is the value redacted by Box B?
 - 0 1/10
- **5**/12
- O 1/8
- O 1/2
- 0 1/6
- O 7/8
- O 1/4
- O 12/5
- \bigcirc 3/8
- $\bigcirc 12$

Nodely

$$\frac{8 - \sqrt{2}}{2} + \frac{0 - \sqrt{2}}{8} + \frac{\sqrt{3 - \sqrt{2}}}{4} = 0$$

Node Vs:

$$-2+\frac{V_2-V_3}{4}+\frac{0-V_3}{6}=0$$

15. What will happen to the power supplied by the source, P_S , and the power absorbed by resistor R_A , P_A , if resistor R_B is connected in parallel with resistor R_A ? Assume that R_B and R_A have similar but not identical resistance values. In addition to marking an answer choice, explain your reasoning as clearly, concisely, and completely as possible in the box below.

- \bigcirc P_S decreases and P_A decreases.
- \bigcirc P_S decreases and P_A stays the same.
- \bigcirc P_S decreases and P_A increases.
- \bigcirc P_S stays the same and P_A decreases.
- \bigcirc P_S stays the same and P_A stays the same.
- \bigcirc P_S stays the same and P_A increases.
- \bigcirc P_S increases and P_A decreases.
- P_S increases and P_A stays the same.
- \bigcirc P_S increases and P_A increases.

Powers absorbed by Ra and Re ice they are in parallel, $V_A = V_g = V_S$