Midterm Exam 2

Last Name: Midnelwi

Student ID: \qquad Section:

○	$2: 30$	Mayer
\bigcirc	$12: 30$	Kildishev
\bigcirc	$12: 30$	Irazoqui
\bigcirc	$7: 30$	Cui
\bigcirc	$1: 30$	Michelusi

I have neither given nor received unauthorized assistance on this exam.

Instructions:

1. Adhere to the Purdue Honor Pledge. Sign the statement above before turning in your exam.
2. Print your name and Student ID. Fill in the bubble corresponding to your section. Print the last two digits of your Student ID in the boxes at the bottom right corner of each oddnumbered page.
3. This is a closed-book, closed-note exam. No study materials should be visible or accessible during the exam. Use of a TI-30X IIS calculator is allowed.
4. For each question, determine the answer and then select the closest choice. Mark the choice by filling in the bubble completely: - Only the marked choice will be scored. Your work to determine an answer may be reviewed as part of an academic integrity assurance process.
5. All questions are equally weighted but are not equally difficult - manage your time wisely.
6. If you need extra space for a question, raise your hand and a proctor will provide an extra sheet of paper.
7. You have 60 minutes to complete the exam.
8. You must turn in (a) all pages of this exam and (b) any extra sheet(s) provided by a proctor.

Learning Outcomes

i. An ability to analyze linear resistive circuits. (Q01 - Q07)
ii. An ability to analyze first-order linear circuits with sources and/or passive elements. (Q08-Q15)
iii. An ability to analyze electronic circuits with diodes and transistors.

For the questions on this page consider the following network output equation:

$$
I_{o}=a_{1} I_{s 1}+a_{2} V_{s 2}
$$

1. What is the value of a_{1} ?$-1$$1 / 4$$-3 / 4$$1 / 3$$-1 / 2$$-1 / 3$
$-1 / 4$

2. What is the value of a_{2} ?$-1$$-3 / 4$$-1 / 2$$-1 / 3$$-1 / 4$
$\bigcirc 1$

$$
a_{1}=\frac{1 / 3}{\frac{1}{4}+\frac{1}{3}} \cdot(-1)=-\frac{1}{4} A
$$

3. What is the component of V_{x} due to the 9 V source in volts?02.3333.5563.667
\bigcirc
44.84.875.333911.222

$$
\begin{aligned}
V_{x}=\frac{3}{3+\frac{48}{11}} \cdot 9 \mathrm{~V} & =\frac{11}{3} \mathrm{~V} \\
& \simeq 3.67 \mathrm{~V}
\end{aligned}
$$

For the questions on this page determine the Thevenin equivalent network looking into the $A-B$ terminal pair.
4. What is the value of $V_{o c}$ in volts?0211.4553.2731.77861.8186.66710

5. What is the value of $R_{t h}$ in ohms?

For the questions on this page determine the Thevenin equivalent network looking into the $A-B$ terminal pair when $g_{m}=2 \mathrm{~S}$.

6. What is the value of $V_{o c}$ in volts?-4-3$-2.769$$-0.231$00.2312.7693436
7. What is the value of $R_{t h}$ in ohms?02.1670.4620.5461.56.528

Nob

$$
\begin{aligned}
&=12\left(3-V_{x}\right) \\
& V_{x}=3-V_{0 c} \\
& V_{0 c}=36-12 V_{0 c} \Rightarrow V_{0 c}=\frac{36}{13} V N 2.77 \mathrm{~V}
\end{aligned}
$$

Rex.

8. What is the capacitance in farads for a capacitor that stores simultaneously 4 C of charge and 5 J of energy?
$\bigcirc 0.4$0.625
2.5
$\bigcirc 1$
1.25
3.42
$\bigcirc 4$
$\bigcirc 5$

$$
\begin{aligned}
& Q=C \cdot V=4 \\
& E=\frac{1}{2} \cdot C \cdot V^{2}=5 \\
& \begin{aligned}
& C V=4 \\
& \underbrace{C V}_{4} \cdot V=\Delta 0 \Rightarrow V=2.5 \mathrm{~V} \\
& C V=4 \Rightarrow C=\frac{4}{V}=\frac{4}{2.5} F \\
&=1.6 \mathrm{~F}
\end{aligned}
\end{aligned}
$$

9. What is the value of V_{x} in volts? Assume that the circuit is operating in the steady state.234
$\bigcirc 6$
$\bigcirc 9$121516

16

$$
\begin{aligned}
& V_{y}=-3 \cdot I=-4 V \\
& I=\frac{12}{3+6}=\frac{T_{4}}{3} A
\end{aligned}
$$

$$
\Rightarrow V_{x}=12 v+(-4 v)=8 V
$$

10. What is the value of $i_{L}(t)$ in amperes at $t=0.6 \mathrm{~s}$ if $R=0.4 \Omega, L=0.5 \mathrm{H}$, and $v_{s}(t)=3 u(t) \mathrm{V}$?02.8590.931.1441.84.6411.856

to (cravit was at steady state)

$$
\begin{aligned}
i_{(0.6)}=i_{L}\left(0^{+}\right)+\frac{1}{l} \int_{0}^{0.6} V_{S}(t) d t & =0+\frac{1}{0 . S} \int_{0}^{0.6} 3 d t \\
& =2 \cdot 3 \cdot 0.6 A=3.6 A
\end{aligned}
$$

For the questions on this page consider the inductor current response $i_{L}(t)$ when $R=0.4 \Omega$, $L=0.5 \mathrm{H}$, and $v_{s}(t)=5 u(-t)+3 u(t) \mathrm{V}$.
11. What is the value of $i_{L}(t)$ in amperes at $t=0$?022.53
567.510
\bigcirc
12.5

20
12. What is the value of $i_{L}(t)$ in amperes at $t=0.6 \mathrm{~s}$?07.7352.8597.749
3.19.7474.4067.510.59412.5

For the questions on this page consider the capacitor voltage response $v_{C}(t)$ when $R_{1}=3 \Omega, R_{2}=6 \Omega, C=0.25 \mathrm{~F}$, $v_{1}(t)=-12 u(-t) \mathrm{V}$, and $v_{2}(t)=15 u(t) \mathrm{V}$.
13. What is the value of $v_{C}(t)$ in volts at $t=0$?$-12$1.5$-8$2.5$-4$5
015

14. What is the value of $v_{C}(t)$ in volts as $t \rightarrow \infty$?$-12$1.5-8$-4$2.5
510
\bigcirc15
$-2.885$$-1.785$
2.0993.2413.8844.96857.90115
At $+\rightarrow \infty$

Q1S

$$
R_{e y}=2 \Omega \Rightarrow e=c \cdot R_{e q}=0.5 \mathrm{~s}
$$

$t>0$

$$
\begin{aligned}
& t \geq 0 \\
& r_{c}(t)=5+(-8-5) e^{-t / 0.5} \\
& \mid \\
&= s-13 \cdot e^{-2 t} \\
& v_{c}(0.75)=5-13 \cdot e^{-1.5} \simeq 2.10 \mathrm{~V}
\end{aligned}
$$

