Final Exam

Last Name:
(print)
Student ID: \qquad
-

First Name:
(print)
Section: (circle appropriate one)
Section 0002 9:30 Peroulis/Mayer
Section 0003 3:30 Michelusi
Section 0004 4:30 Upadhyaya
Section 0005 11:30 Peleato-Inarrea
Section 0006 2:30 Kildishev

I have neither given nor received unauthorized assistance on this exam.

(sign)

Instructions:

1. Adhere to the Purdue Honor Pledge. Sign the statement above before turning in your exam.
2. This is a closed-book, closed-note exam. No study materials should be visible or accessible during the exam. Use of a TI-30X IIS calculator is allowed.
3. An optical scan sheet is to be used to record your answers to the multiple-choice questions. Write your name, section number, and student identification number in the appropriate blocks on the optical scan sheet. Mark the corresponding letters and digits.
4. For each question, determine the answer and then select from among choices "(1)" through "(10" the one that is closest to it. Mark the choice on this exam and on the optical scan sheet. Only the choice marked on the optical scan sheet will be scored. Your work to determine an answer may be reviewed as part of an academic integrity assurance process.
5. All questions are equally weighted but are not equally difficult - manage your time wisely.
6. If you need extra space for a question, use the bottom of the facing page. If you need more space than that, raise your hand and a proctor will provide an extra sheet of paper.
7. You have 120 minutes to complete the exam.
8. You must turn in (a) the optical scan sheet, (b) all pages of this exam, and (c) any extra sheet(s) provided by a proctor.

Potentially Useful Formulas

Response of a first-order network to step change of piecewise-constant input at t_{0} :

$$
x(t)=x(\infty)+\left(x\left(t_{0}\right)-x(\infty)\right) e^{-\left(t-t_{0}\right) / \tau} \text { for } t \geq t_{0}
$$

Gauss's law in one dimension:

$$
\frac{d \mathcal{G}}{d x}=\frac{\rho}{\varepsilon}
$$

$p n$ junction depletion region width:

$$
W=\sqrt{\frac{2 \varepsilon}{q} \frac{N_{a}+N_{d}}{N_{a} N_{d}}\left(V_{b i}-V_{A}\right)}
$$

MOSFET $I_{D}-V_{D S}$ characteristic:

$$
I_{D}= \begin{cases}0 & \text { for } V_{G S}<V_{T} \\ k\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{1}{2} V_{D S}^{2}\right] & \text { for } V_{D S} \leq V_{G S}-V_{T} \\ k\left[\frac{1}{2}\left(V_{G S}-V_{T}\right)^{2}\right] & \text { for } V_{D S} \geq V_{G S}-V_{T}\end{cases}
$$

Learning Outcomes

i. An ability to analyze linear resistive circuits.
ii. An ability to analyze first-order linear circuits with sources and/or passive elements.
iii. An ability to analyze electronic circuits with diodes and transistors.

Question	LO	Points	Score
1	i	4	
2	i	4	
3	i	4	
4	i	4	
5	i	4	
6	1	4	
7	i	4	
8	i	4	
9	i	4	
10	i	4	
11	ii	4	
12	ii	4	
13	ii	4	
14	ii	4	
15	ii	4	
16	ii	4	
17	ii	4	
18	iii	4	
19	iii	4	
20	iii	4	
21	iii	4	
22	iii	4	
23	iii	4	
24	iii	4	
25	iii	4	

1. What is the value of V_{x} in volts?
(1) -7
(6) 5
(2) -5
(7) 6.333
(3) 0
(8) 7
(4) 2
(9) 8
(5) 3
(10) 12

2. What is the value of I_{x} in amperes?
(1) 0
(2) 1
(6) 6
(3) 2
(4) 3
(7) 8
(5) 4
(8) 9
(9) 10
(10) 12

3. What is the value of V_{x} in volts?
(1) -36
(6) 4
(2) -20
(7) 16
(3) -16
(8) 20
(4) -4
(9) 36
(5) 0
(10) 60

4. What is the value of I_{x} in amperes?
(1) -0.5
(6) 0.25
(2) -0.25
(7) 0.5
(3) -0.125
(8) 1
(4) 0
(9) 1.5
(5) 0.125
(10) 2

For Questions 5 and 6 consider the following network model obtained via nodal analysis:

$$
\left[\begin{array}{cc}
\frac{7}{8} & -\frac{1}{4} \\
-\frac{1}{4} & \mathrm{~B}
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A} \\
-2
\end{array}\right]
$$

5. What is the value redacted by Box A?
(1) -8
(2) -6
(6) 1
(3) -4
(7) 2
(4) -2
(8) 4
(5) 0
(9) 6
(10) 8

6. What is the value redacted by Box B ?
(1) 0.1
(6) 0.417
(2) 0.125
(7) 0.5
(3) 0.167
(8) 0.875
(4) 0.25
(9) 2.4
(5) 0.375
(10) 10

For Questions 7 and 8 express voltage V_{x} in the following form

$$
V_{x}=a_{1} V_{s 1}+a_{2} I_{s 2}
$$

7. What is the value of a_{1} ?
(1) -1
(6) $1 / 4$
(2) $-3 / 4$
(7) $1 / 3$
(3) $-1 / 2$
(8) $1 / 2$
(4) $-1 / 3$
(9) $3 / 4$
(5) $-1 / 4$
(10) 1

8. What is the value of a_{2} ?
(1) -1
(6) $1 / 4$
(2) $-3 / 4$
(7) $1 / 3$
(3) $-1 / 2$
(8) $1 / 2$
(4) $-1 / 3$
(9) $3 / 4$
(5) $-1 / 4$
(10) 1

For Questions 9 and 10 consider the Thevenin equivalent network looking into terminal pair $A-B$.
9. What is the value of $V_{o c}$ in volts?
(1) -8
(6) 3
(2) -6
(7) 4
(3) -2
(8) 6
(4) 0
(9) 8
(5) 2
(10) 12

10. What is the value of $R_{t h}$ in ohms?
(1) 0
(6) 4
(2) 1.091
(7) 6
(3) 1.333
(8) 8
(4) 1.667
(9) 10
(5) 2
(10) 12

11. What is the value of $i_{L}(t)$ in amperes at $t=0.75 \mathrm{~s}$ if $R=0.4 \Omega, L=0.5 \mathrm{H}$, and $v_{s}(t)=3 u(t) \mathrm{V}$?
(1) 0
(6) 3
(2) 1.125
(7) 3.384
(3) 1.354
(8) 4.116
(4) 1.646
(9) 4.5
(5) 2.25
(10) 7.5

For Questions 12 and 13 consider the inductor current response $i_{L}(t)$ when $R=0.4 \Omega, L=0.5 \mathrm{H}$, and $v_{s}(t)=3 u(-t)+5 u(t) \mathrm{V}$.
12. What is the value of $i_{L}(t)$ in amperes at $t=0$?
(1) 0
(6) 6
(2) 1.2
(7) 7.5
(3) 1.5
(8) 10
(4) 3
(9) 12.5
(5) 5
(10) 20
13. What is the value of $i_{L}(t)$ in amperes at $t=0.6 \mathrm{~s}$?
(1) 0
(6) 7.5
(2) 4.641
(7) 9.406
(3) 4.765
(8) 10.253
(4) 4.9
(9) 12.251
(5) 5
(10) 12.5
14. What is the expression for $i_{x}(t)$?
(1) 0
(2) 1.667
(3) $0.527 \cos \left(2 t-41.6^{\circ}\right)$
(4) $0.527 \cos \left(2 t+41.6^{\circ}\right)$

(5) $1.581 \cos \left(2 t-132^{\circ}\right)$
(6) $1.581 \cos \left(2 t-48.4^{\circ}\right)$
(7) $1.581 \cos \left(2 t-18.4^{\circ}\right)$
(8) $1.581 \cos \left(2 t+18.4^{\circ}\right)$
(9) $1.581 \cos \left(2 t+48.4^{\circ}\right)$
(10) $1.667 \cos \left(2 t+30^{\circ}\right)$
15. What is the real part of voltage phasor \tilde{V}_{C} if $\tilde{V}_{s}=10 \angle 30^{\circ} \mathrm{V}$?
(1) -0.718
(6) 5.196
(2) 0.718
(7) 5.518
(3) 3.143
(8) 6
(4) 3.6
(9) 6.4
(5) 3.712
(10) 7.943

For Questions 16 and 17 consider the network shown to the right.
16. What is the magnitude of $Z_{e q}$ in ohms?
(1) 0
(6) 37.9
(2) 12
(7) 45
(3) 20
(8) 48
(4) 26.8
(9) 81.9
(5) 36
(10) ∞

17. What is the real part of \tilde{I}_{y} in amperes if $\tilde{V}_{x}=200 \angle-30^{\circ} \mathrm{V}$?
(1) -10.825
(6) 3.208
(2) -8.333
(7) 3.928
(3) -7.217
(8) 4.811
(4) -4.811
(9) 7.217
(5) -3.208
(10) 8.333

For Questions 18 and 19 assume that the $p n$ junction is abrupt and symmetric ($N_{a}=N_{d}$). Also, assume that the junction is modeled using the depletion approximation. These assumptions are consistent with the majority of explanations/examples in the e-text, videos, and lectures.

18. Which profile represents the electric field under forward bias if the dashed profile represents the electric field at equilibrium?

19. Which sequence of applied voltage conditions corresponds to the energy band diagrams shown below?
(1) $V_{A}<0, V_{A}=0, V_{A}>0$
(2) $V_{A}<0, V_{A}>0, V_{A}=0$
(3) $V_{A}=0, V_{A}<0, V_{A}>0$
(4) $V_{A}=0, V_{A}>0, V_{A}<0$
(5) $V_{A}>0, V_{A}<0, V_{A}=0$
(6) $V_{A}>0, V_{A}=0, V_{A}<0$

20. What is the value of V_{o} in volts if the ideal diode model is used for each of the diodes?
(1) -5
(6) 2.667
(2) -2.667
(7) 2.857
(3) 0
(8) 3
(4) 2
(9) 6
(5) 2.5
(10) 7

For Questions 21 and 22 use the ideal diode model.
21. What is the maximum value of $v_{o}(t)$ in volts?
(1) -3
(6) 1
(2) -2
(7) 1.5
(3) -1
(8) 2
(4) 0
(9) 2.121
(5) 0.7
(10) 3
22. What is the average value of $v_{o}(t)$ in volts?
(1) -3
(6) 0.637
(2) -2
(7) 0.955
(3) -0.955
(8) 2
(4) -0.637
(9) 2.121
(5) 0
(10) 3
23. What is the value of the threshold voltage V_{T} in volts for a MOSFET with this $I_{D}-V_{D S}$ characteristic?
(1) -1
(6) 2
(2) 0
(7) 2.5
(3) 0.5
(8) 3
(4) 1
(9) 4
(5) 1.5
(10) 5

24. What is the value of V_{o} in volts if $V_{T}=1 \mathrm{~V}$ and $k=5 \mathrm{~mA} \cdot \mathrm{~V}^{-2}$?
(1) 0
(6) 5
(2) 1
(7) 6
(3) 2
(8) 8
(4) 3
(9) 10
(5) 4
(10) 12

25. What is the value of R in ohms if $V_{T}=1 \mathrm{~V}, k=2 \mathrm{~mA} \cdot \mathrm{~V}^{-2}$, and $V_{o}=0.5 \mathrm{~V}$ when $V_{i}=3 \mathrm{~V}$?
(1) 500
(6) 1556
(2) 750
(7) 2000
(3) 875
(8) 2286
(4) 1000
(9) 4000
(5) 1167
(10) 5000

